
cerium compounds (continued)
superconductivity 685
thermoelectric power 1078–1083
chemical pressure effects 1081
valence fluctuation 1079
cerium–copper alloys
Hall coefficient 331
pressure response 380
cerium iron hydrides 904
cerium–nickel compounds, thermoelectric power 1079
cerium ruthenium silicide
Fermi surfaces 687, 688F
FFT spectra 687F
Hall coefficient 332
heavy conduction electrons 686
Kondo effect 686
CERN see Organisation Europe
´
ene pour la Recherche Nucle
´
aire
cesium–chromium–nickel fluorides, magnetic correlations 705
CFPs see crystal field parameters (CFPs)
chalcogenide glasses
doping, transition metal ions 35
point defects 35
chalcogenides
growth 267
properties, magnetic 1062–1066
chalcogenites, magnetocaloric effect 677
chalcogens, properties, magnetic 1062
channel codes see recording codes
characteristic matrix method 950
and multilayers 953
charge ordering (CO)
phenomenon 87
thin films 87
chemical elements
neutron scattering 1019T
superconductivity 1141T
chemical shift anisotropy (CSA), in solids 1089
chemical shifts, discovery 1088
chemical stability, materials 791–795
chemical vapor deposition (CVD), applications,
superconducting thin films 1235
Chevrel phases 82
chiral ordering 705
chromium, antiferromagnetism 107, 1051, 1058
chromium antimonide, magnetic moments 267
chromium arsenide
magnetic moments 267
properties, magnetic 1064
chromium dioxide
applications, magnetic coatings 672
magnetism 268, 1257, 1261
chromium jarosites, frustration 705
CICC see cable-in-conduit conductors (CICC)
CIP geometry see current-in-plane (CIP) geometry
circular birefringence 949
circular polarization, light 1265
classical phase transitions (CPTs) 980
Clausius–Clapeyron equation 709
CMR see colossal magnetoresistance (CMR)
CNTs (carbon nanotubes) 620
CO see charge ordering (CO)
coatings
applications, magnetic tapes 673
magnetic 672
in recording head–medium interfaces 554
cobalt
itinerant electron studies 111
magnetic anisotropy energy 112
magnetic moments 700
magnetocaloric effect 763
cobalt alloys, saturation magnetization 19, 20F
cobaltates 778
cobalt compounds, hydrides 904
cobalt–copper multilayers, giant magnetoresistance 832
cobalt diselenide
itinerant electron metamagnetism 914
metamagnetism 1063
cobalt disulfide
itinerant electron metamagnetism 914
metamagnetism 1063
cobaltites, negative magnetoresistance 1047
cobalt manganese antimonide, half-metallicity 267
cobalt–nickel multilayers
applications 782
magnetization 448
XRD spectra 785F
cobalt–nickel–oxygen thin-film tapes 882, 887
cobalt–oxygen films 882
cobalt–palladium multilayers
applications 782
magnetic anisotropy 454, 781
cobalt platinate, applications 809
cobalt–platinum alloys
annealing 478
antiphase boundaries 479
applications, permanent magnets 478–482
coercivity 479
magnetic anisotropy 455
structure 478
cobalt–platinum films, domain structures 487, 489
cobalt–platinum multilayers
applications 782, 791
Kerr rotation 781
magnetic anisotropy 454, 781
perpendicularly oriented 540
cobalt pyrites, itinerant electron metamagnetism 912
coercivity
and anisotropy 448
Brown’s paradoxon 67
ceramic ferrite magnets 176
computational micromagnetism 77
decoupled grains, isotropic distribution 70
and domain wall pinning 67, 74
early studies 67
exchange-coupled grains, isotropic distribution 71
global model 72, 74F
grain ensembles 70
and hysteresis loops 67
Kerr microscopy 371
measurement 593
mechanisms 67–81, 432
and nucleation 67, 71
and nucleation fields 68
temperature dependence
nucleation model 71
nucleus-expansion model 72
coherence length 81–87
in Bardeen–Cooper–Schrieffer theory 82
clean limit 82, 82T
dirty limit 82, 82T
1286
Subject Indexcerium–copper alloys