
However, there is a class of superconducting cir-
cuits, known as QFP (quantum flux parametron) or
SFQ (single flux quantum) circuits, that avoid this
problem and, hence, regain the advantage of the very
low power dissipation of Josephson technology, even
at temperatures up to 77 K. The basic circuit element
is the SQUID and power is dissipated only when a
quantum of flux (which is the bit of information in
QFP) moves in or out of the SQUID loop. The mo-
mentary voltage pulse is the bit of information in
SFQ circuits. Such circuits do not need Josephson
junctions of the type shown in Fig. 8; in fact they can
use weak link devices. Thus, they appear to be the
most likely candidates for initial demonstrations of
HTS high-speed electronics.
Another divergence between LTS and HTS that is
already becoming apparent is the extensive use of fully
epitaxial multilayer devices in HTS. In this materials
aspect, HTS begins to resemble III–V semiconductor
technology much more than it does conventional su-
perconductor (niobium) technology. As an example,
an integrated HTS SQUID magnetometer has been
fabricated which utilized 15 epitaxial oxide layers of
superconductors and insulators, plus a final silver
contact layer (see Char et al. 1991a). Indeed, the field
of superconducting thin films, multilayers and devices
is changing and progressing rapidly.
See also: Films and Multilayers: Conventional
Superconducting; Metrology: Superconducting
Cryogenic Current Comparators; Superconducting
Machines: Energy Distribution Components; Super-
conduction Radiation Sensors; Superconducting
Thin Films: Materials, Preparation and Properties;
Superconducting Wires and Cables: Materials and
Processing
Bibliography
Anderson P W, Dayem A H 1964 Phys. Rev. Lett. 13, 195
Banerjee I, Yang Q S, Falco C M, Schuller I K 1983 Aniso-
tropic critical fields in superconducting superlattices. Phys.
Rev. B 28, 5037–40
Braginski A I, Talvacchio J 1990. In: Ruggiero S T, Rudman D
A (eds.) 1990 Superconducting Devices. Academic Press, San
Diego, CA, Chap. 8, p. 273
Brandt N B, Ginzburg N I 1960 Zh. Eksp. Teor. Fiz. 39, 1554
Buck D A 1956 Proc. IRE 44, 482
Buckel W, Gey W 1963 Z. Phys. 176, 336
Char K, Colclough M S, Garrison S M, Newman N,
Zaharchuk G 1991a Biepitaxial grain-boundary junctions in
YBa
2
Cu
3
O
7
. Appl. Phys. Lett. 59 , 733–5
Char K, Colclough M S, Lee L P, Zaharchuk G 1991b Exten-
sion of the biepitaxial Josephson junction process to various
substrates. Appl. Phys. Lett. 59, 2177–9
Eom C B, Sun J Z, Yamamoto K, Marshall A F, Luther K E,
Geballe T H, Cadermann S S 1989 In situ grown
YBa
2
Cu
3
O
7d
thin films from single-target magnetron sput-
tering. Appl. Phys. Lett. 55 (6), 595–7
Gao J, Aarnink W A M, Gerritsma G J, Veldhuis D, Rogalla H
1991 Preparation and properties of all high T
c
SNS-type edge
dc SQUIDS. IEEE Trans. Magn. 27, 3062–5
Geerk J, Gurvitch M, McWhan D B, Rowell J M 1982 Physica
109, 1775
Geerk J, Xi X X, Linker G 1988 Electron tunnelling into thin
films of Y
1
Ba
2
Cu
3
O
7
. Z. Phys. B 73, 329–36
Giaever I 1960 Phys. Rev. Lett. 5, 147
Greene L H, Bagley B G 1990 In: Ginsberg D M (ed.) 1990
Physical Properties of High Temperature Superconductors II.
World Scientific, Singapore, p. 509
Gross R, Chaudhari P, Dimos D, Gupta A, Koren G 1990a
Thermally activated phase slippage in higher T
c
grain bound-
ary Josephson junctions. Phys. Rev. Lett. 64, 228–31
Gross R, Chaudhari P, Kawasaki M, Ketchen M B, Gupta A
1990 Low noise YBa
2
Cu
3
O
7d
grain boundary junction dc
SQUIDS. Appl. Phys. Lett. 57, 727–9
Hammond R H 1975 IEEE Trans. Magn. 11, 201
Inam A, Hegde M S, Wu X D, Venkatesan T, England P, Miceli
P F, Chase E W, Chang C C, Tarascon J M, Wachtman J B
1988 As-deposited High-T
c
and J
c
superconducting thin films
made at low temperatures. Appl. Phys. Lett. 53, 908–9
Ivanov Z G, Nilsson P A, Winkler D, Brorsson G, Claeson T
1991 Proc. SQUID 1991 (in press)
Jia C L, Kabius B, Urban K, Herrman K, Cui G J, Schubert J,
Zander W, Braginski A I, Heiden C 1991 Microstructure of
epitaxial YBa
2
Cu
3
O
7
films on step edge SrTiO
3
substrates.
Physica C 175, 545–54
Josephson B D 1962 Phys. Lett. 1, 251
Karkut M G, Matijaservic V, Antognazza L, Triscone J-M,
Missert N, Beasley M R, Fischer Ø 1988 Anomalous upper
critical fields of superconducting multilayers—verification of
the Takahashi–Tachiki effect. Phys. Rev. Lett. 60, 1751–4
Kirk E C G, Blamire M G, Somekh R E, Evetts J E, Van
Vechten D, Lovellette M N 1991 Ultra-high quality Nb/
AlO
x
/Nb tunnel junctions with epitaxial base layers. IEEE
Trans. Magn. 27, 3137–40
Kleinsasser A W, Gallagher W J 1990 In: Ruggiero S T, Rud-
man D A (eds.) 1990 Superconducting Devices. Academic
Press, San Diego, CA, Chap. 9, p. 325
Li Y Q, Zhao J, Chern C S, Huang W, Kulesha G A, Lu P,
Gallois B, Norris P, Kear B, Cosandey F 1991 High critical
current densities in YBa
2
Cu
3
O
7x
thin films formed by met-
allorganic chemical vapor deposition at 730 1C. Appl. Phys.
Lett. 58, 648–50
Lowndes D H, Norton D P, Budai J D 1990 Superconductivity
in nonsymmetric epitaxial YBa
2
Cu
3
O
7x
/PrBa
3
Cu
3
O
7x
su-
perlattices—the superconducting behavior of Cu–O bilayers.
Phys. Rev. Lett. 65, 1160–3
Martens J S, Ginley D S, Beyer J B, Nordman J E, Hohen-
warter G K G 1991 A Josephson junction to FET high-speed
line driver made of T1CaBaCuO. IEEE Trans. Magn. 27,
3284–8
Rowell J M 1963 Phys. Rev. Lett. 11, 200
Ruggiero S T, Barbee T W, Beasley M R 1980 Phys. Rev. Lett.
45, 1299
Ruggiero S T, Barbee T W, Beasley M R 1982 Phys. Rev. B 26,
4894
Ruggiero S T, Rudman D A (eds.) 1990 Superconducting
Devices. Academic Press, San Diego, CA
Shinjo T, Takeda T 1987 Metallic Superlattices. Elsevier,
Amsterdam
Shoji A, Aoyagi M, Kosaka S, Shinokik F, Hayakawa H 1985
Niobium nitride Josephson tunnel junctions with magnesium
oxide barriers. Appl. Phys. Lett. 46, 1098–100
1247
Thin Films, Multilayers and Devices, Superconducting