Dirlik, T., (1985). Application of computers in fatigue analysis. Ph.D Thesis, University of
Warwick, UK.
Dutch Standard, (1988). ‘Safety regulations for wind generators’. NEN 6096, Draft Standard,
Second Edition.
Eurocode, (1997). 1: Basis of design and actions on structures – Part 2.4: Actions on structures –
Wind actions.
Garrad, A. D. and Hassan, U., (1986). ‘The dynamic response of wind turbines for fatigue life
and extreme load predicition.’ Proceedings of the EWEA Conference, pp 401–406.
Garrad, A. D., (1987). ‘The use of finite-element methods for wind turbine dynamics.’
Proceedings of the BWEA Conference, pp 79–83.
Germanischer Lloyd, (1993). ‘Rules and Regulations: IV – Non-Marine Technology: Part 1 –
Wind Energy: Regulation for the Certification of Wind Energy Conversion Systems.’
(amended 1994 and 1998).
Hansen, A. C., (1998). Users guide to the wind turbine dynamics computer programs YawDyn and
AeroDyn for Adams, Version 11.0. University of Utah, USA.
Hoskin, R. E., Warren, J. G. and Draper, J., (1989). ‘Prediction of fatigue damage in wind
turbine rotors.’ Proceedings of the EWEC, pp 389–394.
International Electrotechnical Commission, (1997). IEC 61400-1: Wind turbine generator systems
– Part 1: Safety Requirements. (Second Edition).
International Energy Agency, (1984). International Recommended Practices for Wind Energy
Conversion Systems Testing: 3. Fatigue Characteristics.
Jamieson, P. and Hunter, C., (1985). ‘Analysis of data from Howden 300 kW wind turbine on
Burgar Hill Orkney.’ Proceedings of the BWEA Conference, pp 253–258.
Jamieson, P., Camp, T. R. and Quarton, D. C., (2000). ‘Wind turbine design for offshore.’
Proceedings of the Offshore Wind Energy in Mediterranean and European Seas, CEC/EWEA/IEA,
Sicily, pp 405–414.
Lobitz, D. W. A., (1984). ‘NASTRAN based computer program for structural dynamic analy-
sis of HAWTs.’ Proceedings of the EWEA Conference.
Madsen, P. H. et al., (1984). ‘Dynamics and fatigue damage of wind turbine rotors during
steady operation.’ Riso National Laboratory, R-512. Riso National Laboratory, Roskilde,
Denmark.
Matsuishi, M. and Endo, T., (1968). ‘Fatigue of metals subject to varying stress.’ Japanese
Society for Mechanical Engineers.
Molenaar, D. P. and Dijkstra, S., (1999). ‘State-of-the-art of wind turbine design codes: main
features overview for cost-effective generation’. Wind Engng., 23, 5, 295–311.
Morgan, C. A. and Tindal, A. J., (1990). ‘Further analysis of the Orkney MS-1 data.’
Proceedings of the BWEA Conference, pp 325–330.
Petersen, J. T. et al.,. (1998). ‘Prediction of dynamic loads and induced vibrations in stall’.
Report No. R-1045. Riso National Laboratory, Roskilde, Denmark.
Putter, S. and Manor, H., (1978). ‘Natural frequencies of radial rotating beams.’ J. Sound Vib.,
56, 2, pp 175–185.
Rasmussen, F., (1984). ‘Aerodynamic performance of a new LM 17.2 m rotor.’ Riso National
Laboratory Report No. M-2467. Riso National Laboratory, Roskilde, Denmark.
Thomsen, K., (1998). ‘The statistical variation of wind-turbine fatigue loads’. Report No. R-
1063. Riso National Laboratory, Roskilde, Denmark.
Thomsen, K. and Madsen, P. H., (1997). ‘Application of statistical methods to extreme loads
for wind turbines.’ Proceedings of the EWEC, pp 595–598.
Veers, P. S., (1988). ‘Three-dimensional wind simulation.’ SAND88-0152, Sandia National
Laboratory.
Warren, J. G. et al., (1988). ‘Prediction of fatigue damage in wind turbine rotors.’ Proceedings
of the BWEA Conference.
312
DESIGN LOADS FOR HORIZONTAL-AXIS WIND TURBINES