49
>ey]_l_jh]_gguoj_Zdpbc\mjZ\g_gb_aZdhgZ^_ckl\mxsbofZkk
\oh^yldhgp_gljZpbbg_\k_o j_Z]_glh\Zlhevdh
]Zahh[jZaguobeb
jZkl\hj_gguo
LZd ^ey j_Zdpbb ]hj_gby m]ey K
H : KH
mjZ\g_gb_kdhjhklbbf__l\b^
ck
⋅=
.
Ijbf_j
>eyj_Zdpbb12
+ O <12 ijhl_dZxs_c\
]Zah\hc nZa_ dhgklZglZ kdhjhklb jZ\gZ JZkkqblZcl_ Z gZqZev
gmxkdhjhklvj_Zdpbb_kebbkoh^gu_dhgp_gljZpbb\_s_kl\ jZ\gu
c12 fheve c(O
2
fheve[kdhjhklvwlhcj_Zdpbb\fh
f_gldh]^Zijhj_Z]bjm_l12
J_r_gb_
Z<khhl\_lkl\bbkaZdhghf^_ckl\mxsbofZkkkdhjhklv^Zgghc
j_Zdpbbhibku\Z_lkymjZ\g_gb_f
cck
⋅⋅=
Ke_^h\Zl_ev-
ghkdhjhklvj_Zdpbb\gZqZevgucfhf_gl\j_f_gb[m^_ljZ\gZ
=⋅⋅=
o
fheve
⋅
k
[ Kdhjhklv wlhc j_Zdpbb \ fhf_gl dh]^Zijhj_Z]bjm_l 12
hibku\Z_lky mjZ\g_gb_f
cck
⋅⋅=
]^_ c
1
12 b c
1
(O
2
) –
gh\u_dhgp_gljZpbb12b2
2
ihke_lh]hdZdijhj_Z]bjh\Zeh12
Bkoh^ybamjZ\g_gbyj_ZdpbbjZkkqblZ_f\_ebqbgu c
1
12b c
1
(O
2
).
12 khklZ\ey_l
∆
c(NO Â fheve lh]^Z
c
1
(NO) = c
0
(NO) –
∆
c(NO) = 0,4 – fheve<khhl\_lkl\bbkh
kl_obhf_ljbq_kdbfb dhwnnbpb_glZfb mjZ\g_gby j_Zdpbb mf_gvr_
gb_dhgp_gljZpbbH
2
jZ\gh
∆
c(O
2
) =
∆
c(NO fheve
LZdbfh[jZahf c
1
H
2
) = c
0
(O
2
) –
∆
c(O
2
) =0,3 – fheveKe_
^h\Zl_evgh
= 0,8 · 0,3
2
· fheve
⋅
k
Ijbf_j
DZd baf_gblky kdhjhklv j_Zdpbb12
+ Cl <
<12&O
_keb Z m\_ebqblv ^Z\e_gb_\ j_Zdpbhgghf khkm^_\ ^\Z
jZaZ[mf_gvrblvh[t_fkhkm^Z\jZaZ"
J_r_gb_
Z<khhl\_lkl\bbkaZdhghf^_ckl\mxsbofZkkkdhjhklv^Zgghc
j_Zdpbb hibku\Z_lky mjZ\g_gb_f
cck
⋅⋅=
Ihkdhevdm
m\_ebq_gb_ ^Z\e_gby ijb\h^bl d ijhihjpbhgZevghfm m\_ebq_gbx
dhgp_gljZpbc ]Zahh[jZaguo \_s_kl\ dhgp_gljZpbb j_Z]_glh\ \ gh
\uomkeh\byo [m^mljZ\gu c
1
(NO) = 2c
0
(NO), c
1
(Cl
2
) = 2c
0
(Cl
2
Dhg
klZglZ kdhjhklb j_Zdpbb ijb m\_ebq_gbb ^Z\e_gby g_ baf_gy_lky b
kdhjhklvj_Zdpbb\gh\uomkeh\byo[m^_ljZ\gZ
cck
⋅⋅=
=
cc
⋅⋅
=
= 8 · k · c
(NO) · c
0
(Cl
2
).