
In Eq 23, 24, 25, and 26,
3
to
6
are constants that depend on strain and temperature, and
3
to
6
are also constants.
With Eq 26, the average activation energy has been calculated on a computer for copper at somewhat lower strain rates.
One researcher has used Eq 26 to fit his experimental data for various steels, aluminum, and copper and has also
calculated activation energies (Ref 27).
For process modeling applications, continuous low-order polynomial equations are adequate because they generally help
obtain rapid convergence and yield good accuracy in finite-element modeling. For example, this method has been used to
describe the constitutive behavior of Ti-6Al-2Sn-4Zr-2Mo for both the transformed and the + microstructures (Ref
28). The polynomial representations describe flow softening and steady-state behavior with a high degree of accuracy.
References cited in this section
1. E.W. Hart, C.Y. Li, H. Yamada, and C.L. Wire, Phenomenological Theory: A Guide to Constituti
Relations and Fundamental Deformation Properties, in Constitutive Equations in Plasticity,
Ed., The MIT Press, 1975, p 149-197
2. R.J. Green, A Plasticity Theory for Porous Solids, Int. J. Mech. Sci., Vol 14, 1972, p 215
3. M. Oyane, S. Shima, and Y. Kono, Theory of Plasticity for Porous Metals, J. Soc. Mech. Eng.,
1973, p 1254
4. S. Shima and M. Oyane, Plasticity Theory for Porous Metals, Int. J. Mech. Sci., Vol 18, 1976, p 285
5. H.A. Kuhn and G.L. Downey, J. Eng. Mater. Technol., 1973, p 41
6. S.M. Doraivelu et al., Int. J. Mech. Sci., Vol 26, 1984, p 527
7. J.E. Hockett, Trans. TMS-AIME, 1967, p 239
8. C. Crussard and B. Jaoul, J. Mech. Solids, Vol 5, 1956, p 95-114
9. S.M. Doraivelu, Ph.D. dissertation, 1979
10.
C.H. Sellars and W.J. McG. Tegart, Review 158, Int. Metall. Rev., Vol 17, 1972, p 1-24
11.
G. Dickenson, J. Iron Steel Inst., 1962, p 2-7
12.
J.M. Bechthold, Trans. ASM, Vol 65, 1954, p 1449-1469
13.
J.D. Hollomon and C. Zener, Trans. AIME, Vol 96, p 237-296
14.
J.H. Westbrook, Trans. ASM, Vol 45, 1953, p 221-248
15.
M. Grothe, Ph.D. dissertation, University of Berlin, 1969
16.
S.K. Samanta, Int. J. Mech. Sci., Vol 10, 1968, p 613-626
17.
H.W. Wagoner, Ph.D. dissertation, University of Lerbeck, 1965
18.
H.G. Hoptner, Ph.D. dissertation, University of Ramschield, 1967
19.
M.E. Backman and S.A. Finnegan, Metallurgical Effects at High Strain Rate, Plenum Press, 1976, p 531-
541
20.
C. Zener and J.H. Holloman, J. Appl. Phys., Vol 15, 1944, p 22-32
21.
C.W. MacGregor and J.C. Fisher, J. Appl. Phys., Vol 15, 1946, p 11-17
22.
J.J. Jonas and J.P. Immarigeon, Z. Metallkd., Vol 60, 1969, p 227-231
23.
T.A. Trozera, O.D. Sherby, and J.E. Dorn, Trans. ASM, Vol 49, 1957, p 173-188
24.
A. Seeger, Philos. Mag., Vol 46, 1955, p 1194
25.
J.J. Jonas, Acta Metall., Vol 17, 1969, p 3
26.
C.M. Sellars and W.J. McG. Tegart, Met. Sci. Rev., 1966, p 731-746
27.
S.K. Samanta, in Proceedings of the Eleventh International MTDR Conference
1970, p 827-883
28.
P. Dadras and J.F. Thomas, Jr., Characterization and Modeling for Forging Deformation of Ti-6242,
Trans. A, Vol 12A, 1967, 1981