The Wave Equation in Two Spatial Dimensions 423
Eigenfunction expansion
> u(x,y,t):=Sum(Sum(u[m,n](x,y,t),m=1..infinity),n=1..infinity);
u(x, y, t) :=
∞
n=1
∞
m=1
2
A(m, n) cos
ω
m, n
t
+B(m, n) sin
ω
m, n
t
sin(mx) sin(ny)
π
(7.8)
> omega[m,n]:=sqrt(4*lambda[m,n]*cˆ2−gammaˆ2)/2;
ω
m, n
:=
m
2
+n
2
(7.9)
We consider the special case where the initial condition functions u(x, y, 0) = f(x, y) and
u
t
(x, y, 0) = g(x, y) are given as
> f(x,y):=x*(Pi−x)*y*(Pi−y);
f(x, y) := x(π −x)y(π −y) (7.10)
> g(x,y):=0;
g(x, y) := 0 (7.11)
From Section 7.5, the double Fourier coefficients A(m, n) and B(m, n) are determined from the
integrals
> A(m,n):=eval(Int(Int(f(x,y)*X[m](x)*w(x)*Y[n](y)*w(y),x=0..a),y=0..b));A(m,n):
=expand(value(%)):
A(m, n) :=
π
0
π
0
2x(π −x)y(π −y) sin(mx) sin(ny)
π
dx dy (7.12)
> A(m,n):=factor(subs({sin(m*Pi)=0,cos(m*Pi)=(−1)ˆm,sin(n*Pi)=0,cos(n*Pi)=(−1)ˆn},
A(m,n)));
A(m, n) :=
8
−1 +(−1)
n
−1 +(−1)
m
πm
3
n
3
(7.13)
> B(m,n):=eval(Int(Int((f(x,y)*gamma/2+g(x,y))/(omega[m,n])*X[m](x)*Y[n](y),x=0..a),
y=0..b));B(m,n):=expand(value(%)):
B(m, n) :=
π
0
π
0
0dx dy (7.14)
> B(m,n):=factor(subs({sin(m*Pi)=0,cos(m*Pi)=(−1)ˆm,sin(n*Pi)=0,cos(n*Pi)=(−1)ˆn},
B(m,n)));
B(m, n) := 0 (7.15)