The Wave Equation in Two Spatial Dimensions 453
ANIMATION
> u(x,y,t):=subs({r=sqrt(xˆ2+yˆ2),theta=arctan(y/x)},u(r,theta,t))*Heaviside(1−sqrt(xˆ2+yˆ2)):
> animate3d(u(x,y,t),x=0..a,y=0..a,t=0..5,axes=framed,thickness=1);
The preceding animation command illustrates the spatial-time-dependent solution for u(r,θ,t).
The animation sequence in Figures 7.9 and 7.10 shows snapshots of the animation at the times
t = 0 and t = 1.
ANIMATION SEQUENCE
> u(r,theta,0):=subs(t=0,u(r,theta,t)):cylinderplot([r,theta,u(r,theta,0)],r=0..a,theta=0..b,
axes=framed,thickness=1);
0.15
0.1
0
0.05
0.25
0.2
0
0.2
0.4
y
z
0.6
0.8
11
0.8
0.6
0.4
x
0.2
0
Figure 7.9
> u(r,theta,1):=subs(t=1,u(r,theta,t)):cylinderplot([r,theta,u(r,theta,1)],r=0..a,theta=0..b,
axes=framed,thickness=1);
20.15
20.1
0
20.05
20.2
0
0.2
0.4
y
z
0.6
0.8
11
0.8
0.6
0.4
x
0.2
0
Figure 7.10
EXAMPLE 7.9.2: We seek the transverse wave amplitude u(r,θ,t)for waves on a thin circular
membrane over the two-dimensional domain D ={(r, θ) |0 <r<1, 0 <θ<π}. There is no
damping in the system and the wave speed is c = 1/2. The sides θ = 0 and θ = π are free, and