Файлы
Обратная связь
Для правообладателей
Найти
Анищенко В.С. Нелинейные эффекты в хаотических и стохастических системах
Файлы
Академическая и специальная литература
Математика
Нелинейная динамика
Назад
Скачать
Подождите немного. Документ загружается.
D
∆
g
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
j
j
j
(I)
(II)
(III)
ω
~
ω
ω
ω
ω
ω
~
~
~
~
~
j
j
j
j
j
j
j
j
j
˜
ω
∆
= 0
.
002
g
= 0
.
55
g
=
3
.
8
D
= 0
D
= 0
.
00001
D
= 0
.
001
[
−
π
,
π
]
j
j
D
eff
θ
j
(
j
+ 1)
D
eff
(
j
) =
lim
t
→∞
1
2
D
d
σ
2
θ
j
(
t
)
d
t
E
,
σ
2
θ
j
(
t
)
=
h
θ
2
j
(
t
)
i
−
h
θ
j
(
t
)
i
2
.
39
≤
j
≤
62
D
D
eff
j
j
D
max
eff
D
eff
≤
D
max
eff
D
max
eff
D
max
eff
=
0
.
001
D
=
0
.
001
j
=
43
j
=
56
30
35
40
45
50
55
60
65
70
j
0.000
0.005
0.010
D
eff
max
D
eff
j
D
=
10
−
8
D
=
10
−
5
D
=
10
−
3
D
max
eff
∆
= 0
.
002
g
= 3
.
8
ρ
j
=
1
j
˙
Φ
j
=
ω
1
+
(
j
−
1)
∆
+
g
(sin(
Φ
j
+1
−
Φ
j
)
−
−
sin(
Φ
j
−
Φ
j
−
1
))
+
√
2
D
η
j
(
t
)
,
j
=
1
,
2
,
.
.
.
,
m.
Φ
0
=
Φ
1
Φ
m
+1
=
Φ
m
∆
=
0
.
002
g
g
=
0
.
55
D
= 0
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
0
20
40
60
80
100
1.00
1.05
1.10
1.15
1.20
~
ω
j
j
ω
~
j
j
ω
~
j
j
ω
j
~
j
∆
=
0
.
002
g
=
0
.
55
g
=
0
.
7
g
=
1
.
5
D
=
0
g
=
1
.
5
D
= 10
−
5
D
=
10
−
5
˙
x
1
=
−
ω
1
y
1
−
z
1
+
C
sin
ω
ex
t,
˙
y
1
=
ω
1
x
1
+
αy
1
,
˙
z
1
=
β
+
z
1
(
x
1
−
µ
)
˙
x
j
=
−
ω
j
y
j
−
z
j
+
γ
(
x
j
−
1
−
x
j
)
,
˙
y
j
=
ω
j
x
j
+
αy
j
,
˙
z
j
=
β
+
z
j
(
x
j
−
µ
)
,
j
=
2
,
3
,
.
.
.
,
m,
j
m
γ
α,
β
,
µ
ω
j
C
ω
ex
ω
j
=
ω
1
=
0
.
924
α
=
0
.
2
,
β
=
0
.
2
,
µ
=
4
ρ
j
Φ
j
x
j
=
ρ
j
cos
Φ
j
,
y
j
=
ρ
j
sin
Φ
j
.
j
=
1
,
2
,
3
,
.
.
.
,
m.
˜
ω
j
˜
ω
j
=
ω
0
≈
0
.
9981
,
j
=
1
,
2
,
.
.
.
,
m
ω
0
ω
ex
ω
0
j
lim
t
→∞
|
Φ
j
(
t
)
−
Φ
ex
(
t
)
|
<
∞
,
Φ
ex
=
ω
ex
t
j
˜
ω
j
=
ω
ex
W
j
=
˜
ω
j
/ω
ex
(
j
=
1
,
2
,
.
.
.
,
m.
)
j
|
W
j
−
1
|
≤
ε
ε
10
−
4
C
ω
ex
γ
=
0
.
01
(
C,
ω
ex
)
j
≥
2
(
C,
ω
ex
)
S
S
m
=
50
ω
ex
,
C
α
=
β
=
0
.
2
,
µ
=
4
,
ω
j
=
0
.
924
,
j
=
1
,
2
,
.
.
.
,
50
,
γ
=
0
.
01
R
Q
W
j
ω
ex
γ
=
0
.
01
C
=
0
.
08
j
W
j
=
1
C
=
0
x
j
(
t
)
=
x
k
(
t
)
y
j
(
t
)
=
y
k
(
t
)
z
j
(
t
)
=
z
k
(
t
) (
j,
k
=
1
,
2
,
.
.
.
,
m
)
0.98
0.99
1.00
ω
ex
0.990
0.995
1.000
1.005
1.010
W
j
j=50
j=2
W
j
ω
ex
j
=
2
j
=
50
γ
= 0
.
01
C
=
0
.
08
(
x
1
,
x
j
)
j
ω
ex
=
0
.
992
h
Φ
1
(
t
)
−
Φ
j
(
t
)
i
j
j
j
=
9
,
11
,
13
±
2
π
k
,
π
/
2
±
2
π
k
,
π
±
2
π
k
,
(
k
=
0
,
1
,
2
,
3
,
.
.
.
)
j
=
42
,
44
,
47
ω
ex
h
Φ
1
(
t
)
−
Φ
j
(
t
)
i
ω
ex
= 1
.
025
X
9
X
11
X
13
j
C
= 0
.
1
,
γ
= 0
.
006
m
2
m
˙
x
i
=
α
(
y
i
−
x
i
−
f
(
x
i
))
,
˙
y
i
=
x
i
−
y
i
+
z
i
+
γ
(
y
i
−
1
+
y
i
+1
−
2
y
i
)
,
˙
z
i
=
−
β
y
i
,
‹
1
2
...
22
23
24
25
26
27
28
...
53
54
›