148
Shui-Nee Chow
and
Masahiro Yamashita
[6] Gruendler, J.,
The ezistence of homoclinic orbits and the method of Melnikov for
systems
in
R",
SIAM
J.
Math. Anal., 16 (5)(1985), 907-931.
[7] Hale, J.K.
Ordinary Differential Equatiow,
Krieger, 1980.
[8]
Hale,
J.K.,
and Lin, X.-B.,
Heteroclinic orbits for retarded functional differential
equatiow,
J. Diff. Eqns. 65(1986), 175-202.
191 Holmes, P.J.,
Averaging and chaotic motions
in
forced oscillations,
SIAM
J.
Appl.
Math. 38(1980), 65-80.
[lo]
Holmes, P.J., and Marsden, J.E.,
Melnikov method and Arnold diffusion for per-
turbatiow of integrable Hamiltonian system,
J.
Math. Physics,
4(
1982), 669-675.
[ll]
Holmes, P.J., Marsden, J.E., and Scheurle, J.,
Ezponentially small splitting of
separatrices,
Preprint, 1987.
[12] Melnikov, V.K.,
On the stability of the center for time periodic perturbations,
Trans. Moscow Math. SOC. 12(1963), 1-57.
[13] Meyer, K.R., and Sell, G.R.,
Melnikov transforms, Bernoulli bundles, and al-
most periodic perturbations,
Oscillation, Bifurcation and Chaos, CMS Conference
Proceedings,
8,
1987.
[14] Moser, J.,
Stable and Random Motions
in
Dynamical System,
Princeton Univer-
sity Press, 1973.
[15] Newhouse, S.E.,
Diffeomorphism with infinitely many sinks,
Topology 13( 1974),
9-18.
[16] Palmer, K.J.,
Ezponential dichotomies and transversal homoclinic points,
J.
Diff.
Eqns. 55(1984), 225-256.
[17] Poincark,
H.,
Les Methodes Nouvelles de la Mecanique celeste,
t.111, Gauthier-
Villars, Paris, 1899.
[18] Sacker, R.J.,
The splitting indez for linear differential system,
J.
Diff. Eqns.,
33(1979), 368405.
[19] Smale,
S.,
Diffeomeophism with many periodic points,
Diff. and Comb. Topology
(S.S.
Chern, ed.), Princeton University Press (1963), 63-80.
[20] Wiggings,
S.,
A generalization of the method of Melnikov for detecting chaotic
[21]
Wiggings,
S.,
and Holmes, P.,
Homoclinic orbits
in
slowly varying oscillators,
invariant sets,
Preprint.
Preprint
.