Автореферат диссертации на соискание ученой степени кандидата
экономических наук : 08.00.13 – Математические и инструментальные
методы экономики. Ставрополь, 2005. 24 с.
Развиваемые в настоящей диссертации подходы к моделированию экономического риска учитывают факты неподчинения нормальному закону распределения в исходной статистике. Таким образом, авторское исследование снимает проблемный вопрос о неправомерности традиционного применения аналитиками весьма большой части методов статистического анализа, включая способы диагностики, разработанные в эконометрике. В диссертационном исследовании линейная парадигма заменена её нелинейной парадигмой, составляющими которой являются эволюционная экономика, теория хаоса, фрактальная статистика, нелинейная динамика и другие направления nonlinear science.
Настоящее диссертационное исследование выполнялось с учетом того, что к настоящему времени отсутствуют сколько-нибудь завершенные теории прогнозирования временных рядов с памятью, что и обуславливает актуальность и необходимость разработки новых математических методов и алгоритмов для выявления возможной потенциальной прогнозируемости рядов с памятью и построения адекватных прогнозных моделей.
В работе представлено еще одно применение исследований, актуальность которого также не вызывает сомнений, а именно, использование методов многокритериальной оптимизации и двухуровневого подхода к задачам экономико-математического моделирования отрасли растениеводства и природных риск-факторов.
Развиваемые в настоящей диссертации подходы к моделированию экономического риска учитывают факты неподчинения нормальному закону распределения в исходной статистике. Таким образом, авторское исследование снимает проблемный вопрос о неправомерности традиционного применения аналитиками весьма большой части методов статистического анализа, включая способы диагностики, разработанные в эконометрике. В диссертационном исследовании линейная парадигма заменена её нелинейной парадигмой, составляющими которой являются эволюционная экономика, теория хаоса, фрактальная статистика, нелинейная динамика и другие направления nonlinear science.
Настоящее диссертационное исследование выполнялось с учетом того, что к настоящему времени отсутствуют сколько-нибудь завершенные теории прогнозирования временных рядов с памятью, что и обуславливает актуальность и необходимость разработки новых математических методов и алгоритмов для выявления возможной потенциальной прогнозируемости рядов с памятью и построения адекватных прогнозных моделей.
В работе представлено еще одно применение исследований, актуальность которого также не вызывает сомнений, а именно, использование методов многокритериальной оптимизации и двухуровневого подхода к задачам экономико-математического моделирования отрасли растениеводства и природных риск-факторов.