ɋɨɝɥɚɫɧɨ ɚɥɶɬɟɪɧɚɬɢɜɟ Ɏɪɟɞɝɨɥɶɦɚ (ɫɦ. Ƀɨɫɫ ɢ Ⱦɠɨɡɟɮ, 1980), ɧɚɦ ɢɡɜɟɫɬɧɨ, ɱɬɨ ɜɟɤɬɨɪ q
k
ɹɜɥɹɟɬɫɹ ɪɟɲɟɧɢɟɦ ɭɪɚɜɧɟɧɢɹ (8.Ⱥ.14) ɩɪɢ ɭɫɥɨɜɢɢ, ɱɬɨ ɩɪɚɜɚɹ ɱɚɫɬɶ (8.Ⱥ.14) ɨɪɬɨɝɨɧɚɥɶɧɚ
ɧɭɥɟɜɨɦɭ ɫɨɛɫɬɜɟɧɧɨɦɭ ɜɟɤɬɨɪɭ ɫɨɩɪɹɠɟɧɧɨɝɨ ɨɩɟɪɚɬɨɪɚ
*
c
L , ɝɞɟ
ɍɪɚɜɧɟɧɢɟ (8.Ⱥ.14) ɦɵ ɦɨɠɟɦ ɪɟɲɢɬɶ. Ɇɨɠɧɨ ɩɨɤɚɡɚɬɶ (ɇɢɤɨɥɢɫ ɢ ɉɪɢɝɨɠɢɣ, 1977), ɱɬɨ
ɚɥɶɬɟɪɧɚɬɢɜɚ Ɏɪɟɞɝɨɥɶɦɚ ɢɦɟɟɬ ɦɟɫɬɨ, ɟɫɥɢ ɜ ɧɚɲɟɣ ɡɚɞɚɱɟ
ɝɞɟ 0 < m ≤; k = 1,... ɂɡ (8.Ⱥ.16) ɜɢɞɢɦ, ɱɬɨ ɪɟɲɟɧɢɟ ɡɚɜɢɫɢɬ ɨɬ ɬɨɝɨ, ɱɟɬɧɨ ɢɥɢ ɧɟɱɟɬɧɨ ɱɢɫɥɨ
j
c
.
ɍɫɥɨɜɢɹ (8.Ⱥ.16) ɜɦɟɫɬɟ ɫ (8.Ⱥ.15) ɩɨɡɜɨɥɹɸɬ ɨɩɪɟɞɟɥɢɬɶ ɤɨɷɮɮɢɰɢɟɧɬɵ ȕ
k
. ɂɡ ɜɬɨɪɨɝɨ
ɫɨɨɬɧɨɲɟɧɢɹ ɜ (8.Ⱥ.13) ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɚɪɚɦɟɬɪ n ɤɚɤ ɮɭɧɤɰɢɹ ɪɚɡɧɨɫɬɢ b - b
ɫ
. Ɍɚɤɢɦ
ɨɛɪɚɡɨɦ, ɦɵ ɦɨɠɟɦ ɧɚɣɬɢ q ɤɚɤ ɮɭɧɤɰɢɸ ȕ – ȕ
c
. Ⱦɚɥɟɟ ɦɵ ɛɭɞɟɦ ɩɪɟɞɩɨɥɚɝɚɬɶ, ɱɬɨ ɩɟɪɜɵɟ
ɧɟɫɤɨɥɶɤɨ ɱɥɟɧɨɜ ȕ
k
ɦɵ ɪɚɫɫɱɢɬɚɥɢ.
ɋ ɭɱɟɬɨɦ ɷɬɢɯ ɪɟɡɭɥɶɬɚɬɨɜ ɦɨɠɟɬ ɛɵɬɶ ɞɨɤɚɡɚɧɚ ɫɥɟɞɭɸɳɚɹ ɬɟɨɪɟɦɚ (ɫɦ. ɇɢɤɨɥɢɫ ɢ
ɉɪɢɝɨɠɢɣ, 1977).
Ɍɟɨɪɟɦɚ 8.A.1.
i) ɉɭɫɬɶ j
c
ɱɟɬɧɨ. ȼ ɨɤɪɟɫɬɧɨɫɬɢ ɨɫɨɛɨɣ ɬɨɱɤɢ ȕ
ɫ
ɧɨɜɵɟ ɛɢɮɭɪɤɚɰɢɨɧɧɵɟ ɪɟɲɟɧɢɹ ɛɭɞɭɬ
ɚɫɢɦɩɬɨɬɢɱɟɫɤɢ ɭɫɬɨɣɱɢɜɵ ɜ ɫɭɩɟɪɤɪɢɬɢɱɟɫɤɨɣ ɨɛɥɚɫɬɢ ȕ > ȕ
c
(ȕ
2
> 0). Ɉɞɧɚɤɨ ɩɪɢ ȕ
2
< 0 ɫɭɛɤɪɢɬɢɱɟɫɤɢɟ ɜɟɬɜɢ ɧɟɭɫɬɨɣɱɢɜɵ.
ii) ɉɭɫɬɶ j
c
ɧɟɱɟɬɧɨ. Ɍɨɝɞɚ ɜ ɨɤɪɟɫɬɧɨɫɬɢ ȕ
ɫ
ɛɢɮɭɪɤɚɰɢɨɧɧɨɟ ɪɟɲɟɧɢɟ ɨɩɪɟɞɟɥɟɧɨ ɞɥɹ ȕ
ɩɨ ɨɛɟ ɫɬɨɪɨɧɵ ɨɬ ȕ
ɫ
. ɇɨɜɨɟ ɛɢɮɭɪɤɚɰɢɨɧɧɨɟ ɪɟɲɟɧɢɟ ɭɫɬɨɣɱɢɜɨ ɧɚ
ɫɭɩɟɪɤɪɢɬɢɱɟɫɤɨɣ ɜɟɬɜɢ, ɤɨɝɞɚ ȕ > ȕ
c
, ɢ ɧɟɭɫɬɨɣɱɢɜɨ ɧɚ ɫɭɛɤɪɢɬɢɱɟɫɤɨɣ ɜɟɬɜɢ, ɤɨɝɞɚ
ȕ < ȕ
c
.
ɇɚ ɪɢɫ. 8.16 ɞɚɧɚ ɢɥɥɸɫɬɪɚɰɢɹ ɫɥɭɱɚɹ (i) ɬɟɨɪɟɦɵ, ɚ ɧɚ ɪɢɫ. 8.17 — ɫɥɭɱɚɹ (ii).
ɋɥɟɞɭɟɬ ɡɚɦɟɬɢɬɶ, ɱɬɨ ɧɚɢɛɨɥɟɟ ɜɚɠɧɵɦ ɫɜɨɣɫɬɜɨɦ ɞɢɫɫɢɩɚɬɢɜ-ɧɵɯ ɫɬɪɭɤɬɭɪ,
ɩɨɥɭɱɟɧɧɵɯ ɩɪɢ ɨɩɢɫɚɧɧɵɯ ɜɵɲɟ ɛɢɮɭɪɤɚɰɢɹɯ, ɹɜɥɹɟɬɫɹ ɢɯ ɚɫɢɦɦɟɬɪɢɱɧɵɣ ɯɚɪɚɤɬɟɪ. Ʉɨɝɞɚ
ɨɩɪɟɞɟɥɟɧɧɨɟ ɤɪɢɬɢɱɟɫɤɨɟ ɡɧɚɱɟɧɢɟ
β
ɫ
ɩɚɪɚɦɟɬɪɚ ȕ ɩɪɟɜɵɲɟɧɨ, ɫɚɦɨɟ ɫɢɦɦɟɬɪɢɱɧɨɟ ɢɡ
ɪɟɲɟɧɢɣ ɩɟɪɟɫɬɚɟɬ ɛɵɬɶ ɭɫɬɨɣɱɢɜɵɦ, ɢ ɫɢɫɬɟɦɚ ɩɟɪɟɯɨɞɢɬ ɤ ɪɟɲɟɧɢɸ ɫ ɦɟɧɶɲɟɣ
ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɨɣ ɫɢɦɦɟɬɪɢɟɣ. ȼ ɩɪɟɞɵɞɭɳɟɦ