172 T. Laroche, A. Vial
3. R.M. Dickson and L.A. Lyon. Unidirectional plasmon propagation in metallic nanowires.
J. Phys. Chem. B, 104:6095–6098, 2000.
4. J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.-P. Goudonnet. Plasmon polaritons
of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B, 60:
9061–9067, 1999.
5. C. Girard. Near fields in nanostructures. Rep. Prog. Phys., 68:1883–1933, 2005.
6. T. Laroche and C. Girard. Near-field optical properties of single plasmonic nanowires. Appl.
Phys. Lett., 89:233119, 2006.
7. F.I. Baida and D. Van Labeke. Three-dimensional structures for enhanced transmission
through a metallic film: annular aperture arrays. Phys.Rev.B, 67:155314, 2003.
8. T. Laroche, F.I. Baida, and D. Van Labeke. Three-dimensional finite-difference time domain
study of enhanced second-harmonic generation at the end of a apertureless scanning near-field
optical microscope metal tip. J. Opt. Soc. Am. B, 22:1045–1051, 2005.
9. A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle. Modeling of regular gold nanostructures
arrays for SERS applications using a 3D FDTD method. Appl. Phys. B 84(1–2):111–115,
2006.
10. K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equa-
tions in isotroptic media. IEEE T. Antenn. Propag., 14:302–307, 1966.
11. A. Taflove and S.C. Hagness. Computational Electrodynamics: The Finite-Difference Time
Domain Method, 2nd ed. Artech House, Boston, 2000.
12. K.S. Kunz and R.J. Luebbers. The Finite-Difference Time-Domain Method for Electromag-
netics. CRC Press, New York, 1993.
13. D.M. Sullivan. Electromagnetic Simulation Using the FDTD Method. Wiley-IEEE Press,
2000.
14. M.C. Beard and C.A. Schmuttenmaer. Using the finite-difference time-domain pulse propaga-
tion method to simulate time-resolved THz experiments. J. Chem. Phys., 114(7):2903–2909,
2001.
15. M. Moskovits, I. Srnov
´
a-Sloufov
´
a, and B. Vlckov
´
a. Bimetallic ag-au nanoparticles: extracting
meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys.,
116(23):10435–10446, 2002.
16. N.G. Skinner and D.M. Byrne. Finite-difference time-domain analysis of frequency-selective
surfaces in the mid-infrared. Appl. Opt., 45(9):1943–1950, 2006.
17. A. Vial, A.-S. Grimault, D. Mac
´
ıas, D. Barchiesi, and M. Lamy de la Chapelle. Improved
analytical fit of gold dispersion: application to the modelling of extinction spectra with the
FDTD method. Phys. Rev. B, 71(8):085416–085422, 2005.
18. T. Grosges, A. Vial, and D. Barchiesi. Models of near-field spectroscopic studies: comparison
between finite-element and finite-difference methods. Opt. Express, 13(21):8483–8497, 2005.
19. A. Hohenau, J.R. Krenn, J. Beermann, S.I. Bozhevolnyi, S.G. Rodrigo, L. Martin-Moreno, and
F. Garcia-Vidal. Spectroscopy and nonlinear microscopy of au nanoparticle arrays: experiment
and theory. Phys. Rev. B, 73(15):155404, 2006.
20. T.-W. Lee and S.K. Gray. Subwavelength light bending by metal slit structures. Opt. Express,
13(24):9652–9659, 2005.
21. H. Ibn El Ahrach, R. Bachelot, A. Vial, G. L
´
erondel, J. Plain, P. Royer, and O. Soppera. Spec-
tral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale
near-field photopolymerization. Phys. Rev. Lett., 98(10):107402, 2007.
22. G. Parent, D. Van Labeke, and F.I. Baida. Theoretical study of transient phenomena in near-
field optics. J. Microsc., 202(2):296–306, 2001.
23. R. Qiang, R.L. Chen, and J. Chen. Modeling electrical properties of gold films at infrared
frequency using fdtd method. Int. J. Infrared Millimeter Waves, 25(8):1263–1270, 2004.
24. A. Mohammadi and Mario Agio. Dispersive contour-path finite-difference time-domain
algorithm for modelling surface plasmon polaritons at flat interfaces. Opt. Express
, 14(23):
11330–11338, 2006.
25. P.G. Etchegoin, E.C. Le Ru, and M. Meyer. An analytic model for the optical properties of
gold. J. Chem. Phys., 125:164705, 2006.