11 One-Dimensional Phase-Change Nanomaterials 289
11.4 Conclusions and Future Prospects
Various types of one-dimensional chalcogenide nanowires can be chemically
synthesized via the vapor–liquid–solid method. Low-dimensional chalcogenide
phase-change nanowires show promise for future-generation information storage
applications owing to their superior material scalability, simple chemical synthesis,
and low-cost manufacturing. The unique physical properties at the nanoscale such
as significantly reduced melting point would enable the design and implementation
of nonvolatile phase-change memories with ultra-low thermal programming energy.
This in turn would help reduce the device size, intercell thermal interference, and
chip power dissipation, leading eventually to ultra-high-density data storage.
Acknowledgments B. Yu and X. Sun are with the University Affiliated Research Center (UARC)
at NASA Ames Research Center and their work was supported by a NASA contract to UARC.
References
1. Ovshinsky, S. R. Phys.Rev.Lett.1968, 21, 1450.
2. Adler, D.; Shur, M. S.; Silver, M.; Ovshinsky, S. R. J. Appl. Phys. 1980, 51, 3289.
3. Chen, M.; Rubin, K.; Barton, R. Appl. Phys. Lett. 1986, 49, 502.
4. Yamada, N.; Ohno, E.; Nishiochi, K.; Akahira, N.; Takao, M. J. Appl. Phys. 1991, 69, 2849.
5. Coombs, J.; Jongenelis, A.; van Es-Spiekman, W.; Jacobs, B. J. Appl. Phys. 1995, 78, 4906.
6. Volkert, C. A.; Wuttig, M. J. Appl. Phys. 1999, 86, 1808.
7. Yamada, N.; Matsunaga, T. J. Appl. Phys. 2000, 88, 7020.
8. Lai, S.; Lowrey, T. IEDM Tech. Dig. 2001, 803.
9. Lai, S. IEDM Tech. Dig. 2003, 255.
10. Pirovano, A.; Lacaita, A. L.; Benvenuti, A.; Pellizzer, S.; Bez, R. IEEE Trans. Elec. Dev. 2004,
51, 452.
11. Kotz, J.; Shaw, M. P. J. Appl. Phys. 1984, 55, 427.
12. Hwang, Y. N.; Lee, S. H.; Ahn, S. J. IEDM Tech. Dig. 2003, 893.
13. Pirovano, A.; Lacaita, A. L.; Benvenuti, A.; Pellizzer, F.; Hudgens, S.; Bez, R. IEDM Tech.
Dig. 2003, 699.
14. Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. A. M. Nat. Mater. 2005, 4,
347–352.
15. Yu,D.;Wu,J.Q.;Gu,Q.A.;Park,H.K.J. Am. Chem. Soc. 2006, 128, 8148–8149.
16. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan,
Y. Q . Adv. Mater. 2003, 15, 353–389.
17. Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. J. Phys. Chem. B 2000, 104, 5213–5216.
18. Cui, Y.; Lieber, C. M. Science 2001, 291, 851–853.
19. Ng, H.T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M. Nano Lett. 2004, 4,
1247.
20. Duan, X. F.; Huang, Y.; Lieber, C. M. Nano Lett. 2002, 2, 487–490.
21. Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L.
Nature 2003, 425, 274–278.
22. Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. Nature 2005, 434,
1085.
23. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nat. Biotechnol. 2005, 23,
1294–1301.