Fitzpatrick, P.F., Tetrahydropterin-dependent amino acid hydrox-
ylases, Annu. Rev. Biochem. 68, 355–381 (1999).
Jaffe, E.K., Martins, J., Li, J., Kervinen, J., and Dunbrack, R.L., Jr.,
The molecular mechanism of lead inhibition of human por-
phobilinogen synthase, J. Biol. Chem. 276, 1531–1537 (2001).
Jaffe, E.K., Morpheeins—a new structural paradigm for allosteric
regulation, Trends Biochem. Sci. 39, 490–497 (2005); and
Lawrence, S.H.and Jaffe, E.K.,Expanding the concepts in protein
structure-function relationships and enzyme kinetics: Teaching
using morpheeins, Biochem. Mol. Biol. Educ. 36, 274–283 (2008).
Kauppinen, R., Porphyrias, Lancet 365, 241–252 (2005).
Louie, G.V., Brownlie, P.D., Lambert, R., Cooper, J.B., Blundell,
T.L., Wood, S.P., Warren, M.J., Woodcock, S.C., and Jordan,
P.M., Structure of porphobilinogen deaminase reveals a flexi-
ble multidomain polymerase with a single catalytic site, Nature
359, 33–39 (1992).
Medlock, A.E., Dailey, T.A., Ross, T.A., Dailey, H.A., and
Lanzilotta, W.N., A -helix switch selective for porphyrin de-
protonation and product release in human ferrochelatase,
J. Mol. Biol. 373, 1006–1016 (2007).
Pagola, S., Stephens, P.W., Bohle, D.S., Kosar, A.D., and Madsen,
S.K.,The structure of malaria pigment -haematin, Nature 404,
307–310 (2000).
Schneider-Yin, X., Gouya, L., Dorsey, M., Rüfenacht, U., Deybach,
J.-C., and Ferreira, G.C., Mutations in the iron-sulfur cluster
ligands of the human ferrochelatase lead to erythropoietic pro-
toporphyria, Blood 96, 1545–1549 (2000).
Sellers, V.M., Wu, C.-K., Dailey, T.A., and Dailey, H.A., Human
ferrochelatase: Characterization of substrate-iron binding and
proton-abstracting residues, Biochemistry 40, 9821–9827 (2001).
Shoolingin-Jordan, P.M., Warren, M.J., and Awan, S.J., Discovery
that the assembly of the dipyrromethane cofactor of porpho-
bilinogen deaminase holoenzyme proceeds initially by the re-
action of preuroporphyrinogen with the apoenzyme, Biochem.
J. 316, 373–376 (1996).
Song,G., Li,Y., Cheng, C.,Zhao,Y., Gao,A., Zhang, R., Joachimiak,
A., Shaw, N., and Li,Z.-J., Structural insight into acute intermit-
tent porphyria, FASEB J. 23, 396–404 (2009). [Reports the
X-ray structure of human porphobilinogen deaminase.]
Thunell, S., Porphyrins, porphyrin metabolism and porphyrias. I.
Update, Scand. J. Clin. Lab. Invest. 60, 509–540 (2000).
Wellems,T.E., How chloroquine works, Nature 355, 108–109 (1992).
Wu, C.-K., Dailey, H.A., Rose, J.P., Burden, A., Sellers, V.M., and
Wang, B.-C., The 2.0 Å structure of human ferrochelatase, the
terminal enzyme of heme biosynthesis, Nature Struct. Biol. 8,
156–160 (2001).
Amino Acids Biosynthesis
Chaudhuri, B.N., Lange, S.C., Myers, R.S., Chittur, S.V., Davisson,
V.J., and Smith, J.L., Crystal structure of imidazole glycerol
phosphate synthase: a tunnel through a (/␣)
8
barrel joins two
active sites, Structure 9, 987–997 (2001).
Dunn, M.F., Niks, D., Ngo, H., Barends,T.R.M., and Schlichting, I.,
Tryptophan synthase: the workings of a channeling nano-
machine, Trends Biochem. Sci. 33, 254–264 (2008).
Eisenberg,D., Gill, H.S.,Pfluegl,M.U., and Rotstein, S.H., Structure–
function relationships of glutamine synthetases, Biochim.
Biophys.Acta 1477, 122–145 (2000);and Gill,H.S. and Eisenberg,
D., The crystal structure of phosphinothricin in the active site
of glutamine synthetase illuminates the mechanism of enzy-
matic inhibition, Biochemistry 40, 1903–1912 (2001).
Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W., and Davies,
D.R., Three-dimensional structure of the tryptophan synthase
␣
2

2
multienzyme complex from Salmonella typhimurium,
J. Biol. Chem. 263, 17857–17871 (1988).
Katagiri, M. and Nakamura, M., Animals are dependent on pre-
formed ␣-amino nitrogen as an essential nutrient, Life 53,
125–129 (2002).
Kishore, G.M. and Shah, D.M.,Amino acid biosynthesis inhibitors
as herbicides, Annu. Rev. Biochem. 57, 627–663 (1988). [Dis-
cusses the biosynthesis of the essential amino acids.]
Larsen, T.M., Boehlein, S.K., Schuster, S.M., Richards, N.G.J.,
Thoden, J.B.,Holden,H.M.,and Rayment,I.,Three-dimensional
structure of Escherichia coli asparagine synthetase B: a short
journey from substrate to product, Biochemistry 38, 16146–
16167 (1999).
Stadtman, E.R., The story of glutamine synthetase regulation,
J. Biol. Chem. 276, 44357–44364 (2001).
Stallings, W.C., Abdel-Meguid, S.S., Lim, L.W., Shieh, H.-S.,
Dayringer, H.E., Leimgruber, N.K., Stegeman, R.A.,Anderson,
K.S., Sikorski, J.A., Padgette, S.R., and Kishore, G.M., Structure
and topological symmetry of the glyphosate target 5-enol-
pyruvylshikimate-3-phosphate synthase: A distinctive protein
fold, Proc. Natl. Acad. Sci. 88, 5046–5050 (1991). [The enzyme
that catalyzes Reaction 6 of Fig. 26-62 in complex with
glyphosate, an inhibitor that is a broad-spectrum herbicide.]
Weeks, A., Lund, L., and Raushel, F.M., Tunneling of intermedi-
ates in enzyme-catalyzed reactions, Curr. Opin. Chem. Biol. 10,
465–472 (2006).
Nitrogen Fixation
Einsle, O., Tezcan, F.A., Andrade, A.L.A., Schmidt, B., Yoshida,
M., Howard, J.B., and Rees, D.C., Nitrogense MoFe-protein at
1.16 Å resolution: A central ligand in the FeMo-cofactor, Sci-
ence 297, 1696–1700 (2002).
Fisher, R.F. and Long, S.R., Rhizobium–plant signal exchange,Na-
ture 357, 655–660 (1992). [Discusses the signals through which
Rhizobiaceae and legumes communicate to symbiotically gen-
erate the root nodules in which nitrogen fixation occurs.]
Jang, S.B., Seefeldt, L.C., and Peters, J.W., Insights into nucleotide
signal transduction in nitrogenase: Structure of an iron protein
with MgADP bound, Biochemistry 39, 14745–14752 (2000).
Lawson, D.M. and Smith, B.E., Molybdenum nitrogenases: a crys-
tallographic and mechanistic view, Metal Ions Biol. Sys. 39,
75–120 (2002).
Mayer, S.M., Lawson, D.M., Gormal, C.A., Roe, S.M., and Smith,
B.E., New insights into structure-function relationships in ni-
trogenase: A 1.6 Å resolution X-ray crystallographic study of
Klebsiella pneumoniae MoFe-protein, J. Mol. Biol. 292,
871–891 (1999).
Peters, J.W., Stowell, M.H.B., Soltis, S.M., Finnegan, M.G., Johnson,
M.K., and Rees, D.C., Redox-dependent structural changes
in the nitrogenase P-cluster, Biochemistry 36, 1181–1187
(1997).
Peters, J.W. and Szilagyi, R.K., Exploring new frontiers of nitroge-
nase structure and mechanism, Curr. Opin. Chem. Biol. 10,
101–108 (2006).
Rees, D.C.,Tezcan, F.A., Haynes, C.A., Walton, M.Y., Andrade, S.,
Einsle, O., and Howard, J.B., Structural basis of biological
nitrogen fixation, Philos.Trans. Roy. Soc.A 363, 971–984 (2005);
and Howard, J.B. and Rees, D.C., How many metals does it
take to fix N
2
? A mechanistic overview of biological nitrogen
fixation, Proc. Natl.Acad. Sci. 103, 17088–17093 (2006).
Schindelin, H., Kisker, C., Schlessman, J.L., Howard, J.B., and
Rees., D.C., Structure of ADP ⴢ AIF
⫺
4
stabilized nitrogenase
complex and its implications for signal transduction, Nature
387, 370–376 (1997).
Seefeldt, L.C.,Hoffman,B.M., and Dean, D.R., Mechanism of Mo-
dependent nitrogenase, Annu. Rev. Biochem. 78, 701–722
(2009).
1086 Chapter 26. Amino Acid Metabolism
JWCL281_c26_1019-1087.qxd 6/8/10 9:38 AM Page 1086