References 409
[HW] R. Hardt and M. Wolf (eds.), Nonlinear Partial Differential Equations in Dif-
ferential Geometry, IAS/Park City Math. Ser., Vol. 2, AMS, Providence, R. I.,
1995.
[Hen] D. Henry, Geometric Theory of Semilinear Parabolic Equations, LNM #840,
Springer, New York, 1981.
[Hild] S. Hildebrandt, Harmonic mappings of Riemannian manifolds, pp. 1–117 in
E. Giusti (ed.), Harmonic Mappings and Minimal Immersions, LNM #1161,
Springer, New York, 1984.
[HRW1] S. Hildebrandt, H. Raul, and R. Widman, Dirichlet’s boundary value prob-
lem for harmonic mappings of Riemannian manifolds, Math. Zeit. 147(1976),
225–236.
[HRW2] S. Hildebrandt, H. Raul, and R. Widman, An existence theory for harmonic
mappings of Riemannian manifolds, Acta Math. 138(1977), 1–16.
[Ho] L. H¨ormander, Non-linear Hyperbolic Differential Equations, Lecture Notes,
Lund University, 1986–1987.
[Iv] A. Ivanov, Quasilinear degenerate and nonuniformly elliptic and parabolic equa-
tions of second order, Proc. Steklov Inst. Math. 160(1984), 1–287.
[J1] J. Jost, Lectures on harmonic maps, pp. 118–192 in E. Giusti (ed.), Harmonic
Mappings and Minimal Immersions, LNM #1161, Springer, New York, 1984.
[J2] J. Jost, Nonlinear Methods in Riemannian and Kahlerian Geometry,Birkh¨auser,
Boston, 1988.
[K] T. Kato, Quasi-linear equations of evolution, with applications to partial differ-
ential equations, pp. 25–70 in W. Everitt (ed.), Spectral Theory and Differential
Equations, LNM #448, Springer, New York, 1974.
[KP] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes
equations, CPAM 41(1988), 891–907.
[KSt] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities
and Their Applications, Academic, New York, 1980.
[KPP] A. Kolmogorov, I. Petrovskii, and N. Piskunov, A study of the equations of dif-
fusion with increase in the quantity of matter, and its applications to a biological
problem, Moscow Univ. Bull. Math. 1(1937), 1–26.
[Kru] S. Krushkov, A priori estimates for weak solutions of elliptic and parabolic
differential equations of second order, Dokl. Akad. Nauk. SSSR 150(1963),
748–751. Engl. transl. Sov. Math. 4(1963), 757–761.
[Kry] N. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order,
D.Reidel, Boston, 1987.
[KryS] N. Krylov and M. Safonov, A certain property of solutions of parabolic equa-
tions with measurable coefficients, Math. USSR Izv. 16(1981), 151–164.
[KMP] K. Kunisch, K. Murphy, and G. Peichl, Estimates on the conductivity in the one-
phase Stefan problem I: basic results, Boll. Un. Mat. Ital. B 9(1009), 77–103.
[LSU] O
. Ladyzhenskaya, B. Solonnikov, and N. Ural’tseva, Linear and Quasilinear
Equations of Parabolic Type, AMS Transl. 23, Providence, 1968.
[Leu] A. Leung, Systems of Nonlinear Partial Differential Equations, Kluwer, Boston,
1989.
[Lie] G. Lieberman, The first initial-boundary value problem for quasilinear second
order parabolic equations, Ann. Sc. Norm. Sup. Pisa 13(1986), 347–387.
[Mars] J. Marsden, On product formulas for nonlinear semigroups, J. Funct. Anal.
13(1973), 51–72.
[McK] H. McKean, Application of Brownian motion to the equation of Kolmogorov–
Petrovskii–Piskunov, CPAM 28(1975), 323–331.