x
g1x 2 f 1g1x 22
12,000 400 7,600
24,000 800 15,200
36,000 1200 22,800
50,000 1667 31,673
100,000 3333 63,327
A26 Answers to Selected Exercises and Chapter Tests
49. (a) ; decreasing (b)
(c)
f 1t 2= 383,000e
-0.0052t
- 0.52%
400,000
350,000
1000
51. (a) ; (b) ;
(c) The graphs are the same. 53. (a) ;
(b) ;
(c) 462.9 million; yes 55. (a)
(b) (c) (d) 22.8 lm
(e)
k = 0.1062I1x2= 22.759e
-0.1062x
I1x 2= 22.75910.8992 2
x
g1t 2= 22.5e
0.3024t
r = 0.3024f 1t2= 22.511.35312
t
a = 1.3531
g1t 2= 20e
1.386t
r = 1.386f 1t2= 2014 2
t
a = 4
25
40
0
4.5 Exercises
■
page 373
1. (a) (b) (c) 3.2189
2. (a) (b) (c) 3
3. Base 2 5. 1.398 7. 9. 0.178 11. 0.092
13. 1.363 15. 2.771 17. 6.213 19. 0.805 21.
23. 0.562 25. 27. 1024 29. 10,000 31.
33. 1004 35. 24.5 37. 4 39. 5 41. 2.21 43.
45. 0, 1.14 47. 0.36 49. (a)
(b) $6561.75 (c) 6.4 yr 51. (a) 11.6 yr (b) 14.1 yr
53. (a) (b) (c) 1823 (d) 11.18 h
(e) 0.58 h 55. (a) (b)
(c) 24.2 yr (d) 2011 57. (a)
(b) 1.16 h 59. (a) (b)
(c) 0.92 h (55 min) 61. (a)
(b) (c) 3.94 g (d) 467 yr
63. 80,089 yr 65. 3029 yr 67. (a) 1938 yr
4.6 Exercises
■
page 386
1. 12 2. Multiply by 2, then add 1; add 1, then multiply by 2.
, , ,
3. different; Horizontal Line 4. (a) one-to-one;
(b) 5. Take the third root, subtract 5, then
divide by 3. (a) (b)
6. 7. Linear; linear 8. (a) False (b) True
9. (a) 5 (b) 2 11. (a) 5 (b) 2
ln x
f
-1
1x 2=
1
3
x - 5
3
f 1x 2= 13x + 52
3
g
-1
1x 2= x - 2
g
N1x 2= 21x + 1 2M1x 2= 2x + 1g1x 2= 2xf 1x2= x + 1
m1t 2= 2210.99957 2
t
a = 0.99957
62.8°CT = 20 + 80e
-1.4988t
T = 65 + 147e
-2.895t
f 1t 2= 70.711.0292
t
a = 1.029
f 1t 2= 15e
1.2t
r = 1.2
A1t 2= 600011.01125 2
4t
- 0.57
1
32
- 9.113
- 0.585
- 1.159
1 =
31x - 22
x
log a
31x - 22
x
b= 0
x = ln 25e
x
= 25
x
f 1g1x22 g1f 1x 22
1 2 3
2 4 3
3 2 5
4 5 5
5 2 1
13.
15. (a) M(x): Multiply by 3, then add 2. N(x): Add 2, then
multiply by 3. (b) ;
(c) ; 17. (a) M(x): Subtract 1, square,
then multiply by 2; N(x): Square, multiply by 2, then subtract 1.
(b) ; (c) ;
19. (a) M(x): Add 3, then raise e to that result;
N(x): Raise e to the input, then add 3. (b) ;
(c) ;
21. (a) M(x): Take the natural log, multiply by 3, then add 5;
N(x): Multiply by 3, add 5, then take the natural log.
(b) ;
(c) is not defined. 23. (a) Add 6, M132= 8.296; N1- 22
N1x 2= ln13x + 5 2M1x2= 3 ln x + 5
N1- 22= 3.135M
13 2= 403.43N1x2= e
x
+ 3
M1x 2= e
x + 3
N1- 22= 7
M132= 8N1x 2= 2x
2
- 1M1x2= 21x - 12
2
N1- 22= 0M132= 11
N1x 2= 31x + 2 2M1x 2= 3x + 2
then divide by 3. (b) ;
25. (a) Multiply by 2, then subtract 4. (b) ;
27. (a) No inverse (b)
29. 2 31. 3 33. (a) 12 (b) 2 (c) 4 (d) 5
35. (a) 6 (b) 4 (c) 0 45. One-to-one
47. Not one-to-one 49. One-to-one 51. One-to-one
53. Not one-to-one 55. Not one-to-one
57. 59.
61. 63.
65. 67.
69. 71. Not one-to-one 73. One-to-one
75. Not one-to-one 77. (a) (b) ;
(c) ; ;
gives the lower price. 79. (a)
(b) (c) ; gives the
number of pounds of emitted when x miles are driven.
(d)
CO
2
f 1g1x22f 1g1x22= 19 a
x
30
bf 1x 2= 19x
g1x 2=
x
30
g1f 1x22
g1f 1x22= 0.8x - 50f 1g1x 22= 0.81x - 502
g1x 2= x - 50f 1x2= 0.8x
f
-1
1x 2= e
x
+ 3
f
-1
1x 2= 2 ln xf
-1
1x 2= 2
x
- 1
f
-1
1x 2=
21x + 12
1 - x
f
-1
1x 2= 2
3
x + 4
f
-1
1x 2= 2xf
-1
1x 2=
x - 7
4
f 1x 2=-2x
2
+ 3f
-1
1x 2= 2x - 4
f 1x 2=
1
2
1x + 42
f
-1
1x 2=
x + 6
3
f 1x 2= 3x - 6