viii
CONTENTS
2
Numerical
integration.
Interest
Rates.
Bonds.
45
2.1 Double
integrals.
. . . . . . . . .
45
2.2
Improper
integrals
..............
48
2.3 Differentiating improper integrals . . . . . .
51
2.4 Midpoint, Trapezoidal,
and
Simpson's
rules.
52
2.5 Convergence of Numerical
Integration
Methods
56
2.5.1 Implementation of numerical integration
methods
58
2.5.2 A concrete
example.
.
62
2.6
Interest
Rate
Curves . . . . . 64
2.6.1
Constant
interest
rates
66
2.6.2 Forward
Rates.
. . . .
66
2.6.3 Discretely compounded interest 67
2.7 Bonds. Yield, Duration, Convexity . .
69
2.7.1 Zero
Coupon
Bonds.
. . . . . .
72
2.8 Numerical implementation of
bond
mathematics
73
2.9 References 77
2.10 Exercises .
78
3
Probability
concepts.
Black-Scholes
formula.
Greeks
and
Hedging.
81
3.1 Discrete probability
concepts.
. . . . . . . .
81
3.2 Continuous probability
concepts.
. . . . . .
83
3.2.1 Variance, covariance,
and
correlation
85
3.3
The
standard
normal variable 89
3.4 Normal
random
variables . . .
91
3.5
The
Black-Scholes
formula.
. 94
3.6
The
Greeks of
European
options.
97
3.6.1 Explaining
the
magic
of
Greeks
computations
99
3.6.2 Implied volatility . . . . . . . . . . . . 103
3.7
The
concept of hedging.
~-
and
r-hedging
. 105
3.8 Implementation of
the
Black-Scholes
formula.
108
3.9 References 110
3.10
Exercises.
. . . . . . . . . . . . . . . . . . .
111
4
Lognormal
variables.
Risk-neutral
pricing.
117
4.1 Change of probability density for functions of
random
variables 117
4.2 Lognormal
random
variables . 119
4.3
Independent
random
variables . . . . . . . . . . . . . . . . . .
121
IX
4.4 Approximating sums of lognormal variables . 126
4.5 Power series . . . . . . . . . . . . . 128
4.5.1 Stirling's formula . . . . . . . . . 131
4.6 A lognormal model for asset prices
...
132
4.7
Risk-neutral
derivation
of
Black-Scholes 133
4.8
Probability
that
options expire in-the--money 135
4.9
Financial
Interpretation
of
N(d
1
)
and
N(d
2
)
137
4.10 References 138
4.11 Exercises . . . 139
5
Taylor's
formula.
Taylor
series.
143
5.1 Taylor's Formula for functions
of
one variable 143
5.2 Taylor's formula for multivariable
functions.
. 147
5.2.1 Taylor's formula for functions
of
two variables 150
5.3 Taylor series expansions
..
. . . . . . . . . 152
5.3.1 Examples
of
Taylor series expansions . 155
5.4 Greeks
and
Taylor's formula . . . . . . . . . . 158
5.5 Black-Scholes formula: ATM
approximations.
160
5.5.1 Several ATM approximations formulas 160
5.5.2 Deriving
the
ATM approximations formulas
161
5.5.3
The
precision of
the
ATM
approximation
of
the
Black-
Scholes formula . . . . . . . . . . . . . 165
5.6 Connections between
duration
and
convexity . 170
5.7 References 172
5.8
Exercises..................
173
6
Finite
Differences.
Black-Scholes
PDE.
177
6.1 Forward, backward, central finite differences 177
6.2
Finite
difference solutions of
ODEs
. . . . . 180
6.3
Finite
difference approximations for
Greeks.
190
6.4
The
Black-Scholes
PDE
. . . . . . . . . . .
191
6.4.1 Financial
interpretation
of
the
Black-Scholes
PDE
. 193
6.4.2
The
Black-Scholes
PDE
and
the
Greeks 194
6.5 References
6.6
Exercises......................
7
Multivariable
calculus:
chain
rule,
integration
by
substitu-
195
196
tion,
and
extrema.
203
7.1
Chain
rule for functions
of
several
variables.
. . . . . . . . . . 203