K
(p,n)
w−1
(x), K
(p,n)
w
(x), K
(p,n)
w+1
(x)
K
(p,n)
w
(x) n → ∞ p = 2
K
(q,n)
w
(x)
H Aut(F
n
q
)
H < Aut(F
q
)
M
1
(F
p
) (F
q
, +) F
q
Φ
q−1
2
F
q
F
q
H
E, |E| − 1, F
∗
q
F
q
q
Φ
E F
∗
q
K
(p,n)
w
(x)
K
(q,n)
1
(x) = (q − 1)n − qx
K
(q,n)
2
(x) =
1
2
((q − 1)
2
(n
2
− n) − (2nq(q −1) −q(q − 2))x + q
2
x
2
)
P
H
(w, s), c, w ∈ {0, . . . , m}
H
G
n
l
= F
n
q
S
n
H Aut(G
n
l
)
A
w
⊂ F
n
q
H
n = 1 H
F
q
H b ∈ F
q
A
b
c
b
(x), x ∈ G
n
l
, b ∈ G
l
,
x ∈ F
n
q
A
b
b c(x) = (c
b
0
(x), . . . , c
b
q−1
(x)) F
q
= {b
0
, . . . , b
q−1
}
x x
c = (c
b
0
, . . . , c
b
q−1
), c
b
0
+···+ c
b
q−1
= n,
a ∈ F
q
c(a) = c