H Aut(G) f(x), f(x) ∈ W (G
n
),
H f(x) = f(x
ϕ
) ϕ ∈ H
x ∈ G
A
g
= {g
ϕ
|ϕ ∈ H}
G
n
H g ∈ G
l
A
g
= A
s
f
A
s
, s = 0, . . . , m
G = F
l
p
l− F
p
H = Aut(G)
Aut(G) F
l
p
M
l
(F
p
) l×l−
F
l
p
Aut(F
l
p
)
A
0
= {0} A
1
= F
l
p
r {0}
m = 1
F
l
p
A
0
A
1
Aut(F
l
p
)
F
∗
q
Aut(F
l
p
) F
∗
q
x → ax, a ∈ F
∗
q
x a
F
p
l
l F
p
q−1
F
∗
q
F
q
e
A
w
e
H =
f
F
l
p
e
A
0
= {1} 1 G
l
f
F
l
p
e
A
1
=
f
F
l
p
r {1}
Φ
H
(x, $)
Φ
H
(x, $) :=
X
ϕ∈H
$(x
ϕ
)
Φ
H
(x, $) = |St(x)|
X
y∈A
s
$(y), x ∈ A
s
,
St(x) x H St(x) H
x St(x) = St(y) x y
A
s
Φ
H
(x, $) x $ ∈
e
G
H
$ ∈
e
A
w
x ∈ A
s
, w, s ∈ {0, . . . , m} $
eϕ
(x) = $(x
ϕ
)
ϕ ∈ H
e
H = eρ(H)
Φ
H
(x, $)
Φ
H
(x, $) =
X
ϕ∈H
$(x
ϕ
) = |St(x)|
X
y∈A
s
$(y) =
X
eϕ∈
e
H
$
eϕ
(x) = |St($)|
X
$
0
∈
e
A
w
$
0
(x),