ϕ C
µ
a b
−b a
¶
ϕ : a + ib →
µ
a b
−b a
¶
.
ϕ C
µ
a b
−b a
¶
ϕ(ab) = ϕ(a)ϕ(b), ϕ(a + b) = ϕ(a) + ϕ(b), a, b ∈ C.
U = (a
i,j
)
i,j=1,...,n
a
i,j
2 ×2− ϕ 2n ×2n−
b
U
b
U
c
U
0
=
d
UU
0
ϕ : U →
b
U
U(n) O(2n) ϕ(U(n)) U(n)
O(2n)
ϕ(U(n)) 6= O(2n) n > 1 O(2n)
ϕ(U(n))
K S
n−1
S
n−1
x, y ∈ S
n−1
λ(K) K
λ(K) = min
x,y∈K,x6=y
λ(x, y).
G O(n) a
S
n−1
K = {ag|g ∈ G} ⊂ S
n−1
G
K = K(G, a) a
K = {ag|g ∈ G} ⊂ S
n−1
O(n) K(G, a)
G a
K(G, a)
K(G, a) = K(G, b) b ∈ K(G, a)
St
a
a G St
a
= {g|(g ∈
G)&(ag = a)} St
a
G St
b
= g
−1
St
a
g b = ag
St
b
, b ∈ K, G
G
|K| =
|G|
|St
a
|
.
wt(x) $(x)