λ
2
(π(a), π(b)) = |a − b, a − b|
2
= 2 − 2<(a, b) =
½
2q
q−1
, a 6= b
0, a = b
<x x
ρ ρ(x) =
q−1
2q
x
U
q−2
q − 1− n
0
= q − 1
U
q−2
Y
1
2(q −1)−
S
2q−3
λ
1
(Y
1
) =
q
2q
q−1
Y
1
X, q > 2,
q
q − 1
2(q − 1)−
X
X
b
X
b
X
K(G, a) G
g
a
= diag
µ
exp
µ
2π i a
q
¶
, exp
µ
2π i 2a
q
¶
, . . . , exp
µ
2π i (q − 1)a
q
¶¶
, a ∈ Z
q
.
a a =
1
√
q−1
(1, . . . , 1) ∈ U
q−2
K(G, a)
q
X Y
1
X
U
q−2
C
q−1
ϕ
ϕ G G
0
2(q − 1) × 2(q − 1)− G
0
a
0
=
1
√
q−1
(ϕ(1), . . . , ϕ(1)) =
1
√
q−1
(1, 0, 1, 0, . . . , 1, 0) ∈ S
2(q−1)−1
K(G
0
, a
0
)
S
2(q−1)−1
G
0
2 × 2− ϕ(exp
³
2π i ab
q
´
), a, b ∈ Z
q
G G
0
ϕ
K(G, a) ⊂ U
q−2
K(G
0
, a
0
) ⊂ S
2(q−1)−1
K(G
0
, a
0
)
X
S
2(q−1)−1