τ
q
(N, w, r) (w, r)−
q−
K q
τ
q
(w, r) = lim
N→∞
τ
q
(N, w, r).
q− (w, r)− n
q, w, r = const, n → ∞
(w, r)−
K = K(C
1
), K(C
2
), . . . ,
(2, r)− N
j
K
2− 3
C = C
1
, C
2
, . . . , (2, r)− C
j
n
j
n
j
→ ∞, j → ∞ R
2
(C) = lim
j→∞
log
2
|C
j
|
n
j
C
(2, r)−
τ(K) = lim
j→∞
log
2
|K(C
j
)|
N
j
K
τ(K) =
1
3
R
2
(C).
C
j
(2, r)−
τ
2
(2, r) ≥
1
3
R
2
(2, r) ≥
1
3
Y (2, r).
Y (w, r)
(2, r)− 2−
¤
q > 2
τ(2, 1) τ(2, 1) ≥ τ(2, 1) = 0, 149
τ(2, 1) τ(2, 1)
R
2
(2,1)
3
=
Y (2,1)
3
=
0.2075
3
= 0.0691667
τ(2, 1)
(2, 1)−
2− K 3
(2, 1)−