
F
(2)
(x) =
d−2
X
s=0
c
(2)
s
f
s
(x), γ
(2)
i
=
d−2
X
s=0
c
(2)
s
z
i
f
s
(ω
i
) = z
i
F
(2)
(ω
i
).
F
(2)
(x) = a
(2)
x(x−ω
d
) ···(x−ω
2d−4
), a
(1)
6=
0
θ(x) =
F
(1)
(x)
F
(2)
(x)
=
a
(1)
(x − 1)
a
(2)
x
F
(1)
(x) F
(2)
(x) F
(i)
(ω) 6= 0, i = 1, 2
ω 6= ω
j
, j = 1, 2, d, d + 1, . . . , 2d − 4 ω 6= ∞
θ(x) ω
j
j = d, d + 1, . . . , 2d − 4
a
(1)
a
(2)
a
(1)
a
(2)
x = ∞ ω
3
θ(x)
z
3
F
(i)
(∞) =
P
d−2
s=0
c
(i)
s
z
3
f
s
(∞), i = 1, 2 θ(∞)
B
0
z
3
f
s
(∞)
B
0
F
(i)
(∞) 6= 0
d−2 F
(i)
(x) d−2 ∞
θ(x) =
F
(1)
(∞)
F
(2)
(∞)
µ
x − 1
x
¶
F
(i)
(x) e
ω
=
θ(ω) θ(x) ω ∈ F
0
q
ω 6= ω
j
, j = 1, 2, d, d + 1, . . . , 2d −4 ω 6= ∞
ω
j
= θ
−1
(e
ω
j
), j 6= 1, 2, 3, d, d + 1, . . . , 2d −4
ω
i
, i = 1, 2, 3,
θ
−1
(x) θ
−1
(x) =
F
(1)
(∞)
F
(1)
(∞)−xF
(2)
(∞)
ω
j
j j = d, d + 1, . . . , 2d − 4
ω
j
F
(i)
(x) F
(1)
(x)
1, ω
2d−3
, ω
2d−2
, . . . , ω
3d−6
ω
j
, j =
d, d + 1, . . . , 2d −4
ω
j
j
z
i
h