
T
2
(a, a
0
, b) = 2
m
µ
1 + (−1)
T r
s(
a
2
a
2
+a
0
2
)+s(
aa
0
a
2
+a
0
2
)+
ab
a
2
+a
0
2
¶
.
¤
F
2
a, a
0
, b ∈ F
q
, a 6= a
0
, T r(s(ax) + s(a
0
x) + bx)
y = xA x = (x
1
, . . . , x
m
) A
T r(s(ax) + s(a
0
x) + bx) =
m−1
2
X
i=1
y
2i−1
y
2i
+ αy
m
, α ∈ F
2
.
m = 2t −1, t > 1 s(ax)
m = 2t − 1
K(m) n = 2
m+1
= 2
2t
Υ(a, b, ε, γ) = ( T r(s(ax) + bx + ε) |T r(s(ax) + (a + b)x + γ + ε) ), γ, ε ∈ F
2
, a, b ∈ F
2
2t−1
,
T r(s(ax) + bx + ε) T r(s(ax) + (a + b)x + γ + ε)
n
2
= 2
m
K(m)
K(m) Υ(a, b, ε, γ) +
Υ(a
0
, b
0
, ε
0
, γ
0
) K(m)
T r(s(ax)) + T r(s(a
0
x)) + bx + b
0
x
Υ(a, b, ε, γ) Υ(a, b, ε, γ)
T r(s((a + a
0
)x) + b
0
x + bx + b
00
x b
00
∈ F
2
m
a
a
0
T r(s((a + a
0
)x) + (a + a
0
)x + (b
0
+ b)x + b
00
x
m
K(m) n = 2
m+1