
(T r(s(ax) + bx + ε), T r(b
0
x + ε
0
) = (−1)
ε+ε
0
T (a, b + b
0
)
(T r(s(ax) + (a + b)x + γ + ε)), T r(+b
0
)x + γ
0
+ ε
0
)) =
= (−1)
ε+ε
0
+γ+γ
0
T (a, b + b
0
+ a)
0 2
t
= 2
m+1
2
a = a
0
, b + b
0
6= 0
(Υ(a, b, ε, γ), Υ(a, b
0
, ε
0
, γ
0
))
a = a
0
, b = b
0
, (ε, γ) 6= (ε
0
, γ
0
) (Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
)) = 0
γ + γ
0
6= 0 (Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
)) = −2
m
γ + γ
0
= 0 ε + ε
0
6= 0
(a, b, ε, γ) (a
0
, b
0
, ε
0
, γ
0
)
4n
2
³
¡
n
2
¢
2
−
n
2
´
= n
4
− 2n
3
|(Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
))| = 2
m+1
2
K
m
Υ
Υ, Υ
0
∈ K
m
(Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
)) = −2
m
2
(Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
)) = 2
m+1
2
(a, b, ε, γ) (a
0
, b
0
, ε
0
, γ
0
)
8n
³
¡
n
2
¢
2
−
n
2
´
= 2n
3
− 4n
2
(a, b, ε, γ) (a
0
, b
0
, ε
0
, γ
0
)
(Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
)) = 0 8
¡
n
2
¢
2
= 2n
2
(Υ(a, b, ε, γ), Υ(a, b, ε
0
, γ
0
)) = ±n 2n
2
¤
Z
4
4
Z
4