
a
β
j
= f (β
j
), j = 1, . . . , n − d + 1
f(x)
n − d + 1
f(x)
f(x)
r(x) =
Q
n−d+1
j=1
(x − β
j
) r
j
(x) =
r(x)
x−β
j
, j = 1, . . . , n − d + 1
γ
j
= r
j
(β
j
) 6= 0, r
j
(β
i
) = 0 i 6= j
f(x) n −
d a
β
j
β
j
, j = 1, . . . , n − d + 1
f(x) =
a
β
1
γ
1
r
1
(x) +
a
β
2
γ
1
r
2
(x) + ··· +
a
β
n−d+1
γ
n−d+1
r
n−d+1
(x).
u = wt(e) a
0
= a + e, a ∈ RS
q
(n, d),
O
u
(x, b
0
, . . . , b
2u−1
) F
B
(x)
β ∈ A ⊆ F
q
O
u
(β, b
0
, . . . , b
2u−1
) 6= 0 β 6∈ B
a
0
β
F
q
= A n−d+1
β
j
∈ A a
β
j
a
0
f(x) a
e
t
d−1
2
a
0
= a + e K(B
(d)
A
) = RS
q
(n, d), A = {α
1
, . . . , α
n
} ⊆
F
q
,
t wt(e) ≤ t d ≥ 2t + 1
t
a = (a
1
, . . . , a
n
) = (f(α
1
), . . . , f(α
n
)),
a ∈ RS
q
(n, d)
f(x) s = n −d A