54 Luis A. Agapito and Jorge M. Seminario
[74] J. L. Bahr, E. T. Mickelson, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, “Dis-
solution of small diameter single-wall carbon nanotubes in organic solvents?,” Chemical
Communications, pp. 193–194, 2001.
[75] K. Kamaras, M. E. Itkis, H. Hu, B. Zhao, and R. C. Haddon, “Covalent bond formation to
a carbon nanotube metal,” Science, vol. 301, pp. 1501–1501, 2003.
[76] S. Banerjee and S. S. Wong, “Selective metallic tube reactivity in the solution-phase osmy-
lation of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol.
126, pp. 2073–2081, 2004.
[77] R. S. Mulliken, “Electronic population analysis on Lcao-Mo molecular wave functions. 3.
Effects of hybridization on overlap and gross Ao populations,” Journal of Chemical Physics,
vol. 23, pp. 2338–2342, 1955.
[78] R. S. Mulliken, “Electronic population analysis on Lcao-Mo molecular wave functions. 4.
Bonding and antibonding in Lcao and valence-bond theories,” Journal of Chemical Physics,
vol. 23, pp. 2343–2346, 1955.
[79] R. S. Mulliken, “Electronic population analysis on Lcao-Mo molecular wave functions. 1.,”
Journal of Chemical Physics, vol. 23, pp. 1833–1840, 1955.
[80] R. S. Mulliken, “Electronic Population Analysis on Lcao-Mo Molecular Wave Functions. 2.
Overlap Populations, Bond Orders, and Covalent Bond Energies,” Journal of Chemical
Physics, vol. 23, pp. 1841–1846, 1955.
[81] N. P. Guisinger, N. L. Yoder, and M. C. Hersam, “Probing charge transport at the
single-molecule level on silicon by using cryogenic ultra-high vacuum scanning tunneling
microscopy,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 102, pp. 8838–8843, 2005.
[82] N. P. Guisinger, R. Basu, A. S. Baluch, and M. C. Hersam, “Molecular electronics on
silicon – An ultrahigh vacuum scanning tunneling microscopy study,” Molecular Electronics
III, vol. 1006, pp. 227–234, 2003.
[83] N. P. Guisinger, R. Basu, M. E. Greene, A. S. Baluch, and M. C. Hersam, “Observed
suppression of room temperature negative differential resistance in organic monolayers on
Si(100),” Nanotechnology, vol. 15, pp. S452–S458, 2004.
[84] N. P. Guisinger, M. E. Greene, R. Basu, A. S. Baluch, and M. C. Hersam, “Room temperature
negative differential resistance through individual organic molecules on silicon surfaces,”
Nano Letters, vol. 4, pp. 55–59, 2004.
[85] C. A. Richter, D. R. Stewart, D. A. A. Ohlberg, and R. S. Williams, “Electrical charac-
terization of Al/AlOx/molecule/Ti/Al devices,” Applied Physics A: Materials Science &
Processing, vol. 80, pp. 1355–1362, 2005.
[86] G. D. J. Smit, M. G. Flokstra, S. Rogge, and T. M. Klapwijk, “Scaling of micro-fabricated
nanometer-sized Schottky diodes,” Microelectronic Engineering, vol. 64, pp. 429–433, 2002.
[87] G. D. J. Smit, S. Rogge, and T. M. Klapwijk, “Scaling of nano-Schottky-diodes,” Applied
Physics Letters, vol. 81, pp. 3852–3854, 2002.
[88] J. M. Seminario and J. M. Tour, “Ab initio methods for the study of molecular systems
for nanometer technology: Toward the first-principles design of molecular computers,”
Molecular Electronics: Science and Technology, vol. 852, pp. 68–94, 1998.
[89] J. M. Seminario and L. M. Yan, “Ab initio analysis of electron currents in thioalkanes,”
International Journal of Quantum Chemistry, vol. 102, pp. 711–723, 2005.