References 191
∂
∂t
p (X, t | X
,t
)
=
1
2
α,β,k
∂
∂X
α
d
α,k
(X, t)
∂
∂X
β
(d
β,k
(X, t)p (X, t | X
,t
))
−
α
∂
∂X
α
[F
α
(X, t)p (X, t | X
,t
)] . (6.178)
Finally it should be noticed that the connection between the stochastic differ-
ential equations and Fokker–Planck equations allows us to create representa-
tive trajectories for a given Fokker–Planck equation by numeric simulations.
References
1. L. Arnold: Stochastic Differential Equations (Wiley-Interscience, New York,
1974) 187
2. H. Risken: The Fokker–Planck Equation (Springer, Berlin Heidelberg New York,
1984) 174
3. E. Fick, G. Sauermann: Quantenstatistik DYNAMISCHER Prozesse I (Akadem-
ische Verlagsgesellschaft, Leipzig, 1983) 150, 160
4. E.Fick,G.Sauermann:Quantenstatistik Dynamischer Prozesse IIa (Akademis-
che Verlagsgesellschaft, Leipzig, 1983) 150, 167, 180
5. M. Schulz: Statistical Physics and Economics (Springer, Berlin Heidelberg New
York, 2003) 160, 182
6. W. G¨otze,L.Sj¨ogren; J. Non-Cryst. Solids 131–133, 161 (1991) 160
7. W. G¨otze,L.Sj¨ogren, Rep. Prog. Phys. 55, 241 (1992) 160
8. K. Kawasaki: Ann. Phys. 61, 1 (1970) 160
9. W. G¨otze, A. Zippelius: Phys. Rev. A 14, 1842 (1976) 182
10. J. Marcienkiewicz: Math. Z. 44, 612 (1939) 164
11. C.W. Gardiner: Handbook of Stochastic Methods (Springer, Berlin Heidelberg
New York, 1997) 169
12. U. Balucanu, M. Zoppi: Dynamics of the Liquid State (Clarendon Press, Oxford,
1994) 167
13. R.L. Stratonovich: Introduction to the Theory of Random Noise (Gordon and
Breach, New York, 1963) 187
14. W. Feller: An Introduction to Probability Theory and Its Applications, vol. 1,
3rd edn (Wiley, New York, 1968) 185
15. W. Feller: An Introduction to Probability Theory and Its Applications, vol. 2,
2nd edn (Wiley, New York, 1971) 185
16. N.G. van Kampen: Stochstic Processes in Physics and Chemistry (North-
Holland, Amsterdam, 1981) 187
17. H. Mori: Prog. Theor. Phys. 33, 423 (1965) 180
18. H. Mori: Prog. Theor. Phys. 34, 339 (1965) 181
19. R. Zwanzig: Ann. Rev. Phys. Chem. 16, 67 (1961) 181
20. A.N. Kolmogorov: Foundations of the Theory of Probability (Chelsa, New York,
1950) 150