
11. Electrodeposition of Metals from Molten Salts
289
melts is dependent on the content of alumina. In order to exhibit a slow
dissolution of oxide anodes, the alumina concentration should be maintained
at a relatively high level. The alumina content in the industrial cells with
graphite anodes is maintained at 2 to 4 %. If the oxide type of anodes are to
be used in the production, the content of alumina in the melt should probably
be kept at higher levels, which should be determined by the additional
studies.
11.5 FURTHER READINGS
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Cathro K.J., Deutcher R.L., Sharma R.A. Electrowinning Magnesium from Its Oxide in a
Melt Containing Neodymium Chloride. J. Appl. Electrochem. 1997; 27:404-413.
Polyakov E.G., Polyakova L.P., Elizarova I.R. Cathode Processes in Chloride-Fluoride
Melts containing Elektrokhimiya 1995; 31: 502-509.
Rosenkilde C, Vik A., Østvold T., Christensen E. Electrochemical Studies of the Molten
System at 700 °C. J. Electrochem. Soc. 2000; 147:
3790-3800.
Katagari A., Suzuki M., Takehara Z. Electrodeposition of Tungsten in XnBr2-NaBr and
ZnCl2-NaCl Melts. J. Electrochem. Soc. 1991; 138:767-773.
Janz G.J., Reeves R.D. “Molten Electrolytes – Transport Properties” In Advances in
Electrochemistry and Electrochemical Engineering, Vol. 5, Tobias C.W., ed., pp. 13 –
171, New York: Interscience Publishers, 1967.
Haupin W.E., Frank W.B. “Electrometallurgy of Aluminum” In Comprehensive Treatise
of Eelctrochemistry, Vol.2: Electrochemical Processing, Plenum Press, Bockris J.O’M.,
Conway B.E., Yeager E., White R.E., eds., pp. 301 – 325, New York: Plenum Press,
1981.
Grjotheim K., Krohn C., Malinovsky M., Matiasovsky K., Thonstad J. Aluminium
Electrolysis, Fundamentals of the Hall-Héroult Process, Second Edition, Aluminium
Verlag, Dusseldorf, 1982.
S.S., Conway B.E. Electroanalytical Methods for Determination of in
Molten Cryolite, In Modern Aspects of Electrochemistry, Vol. 26, Conway B.E., Bockris
J.O’M, White R.E., eds., pp. 229 – 275, New York: Plenum Press, 1994.
Dewing E. W., van der Kouwe E.T. Anodic Phenomena in Cryolite Alumina Melts. I.
Overpotentials at Graphite and Baked Carbon Electrode. J. Electrochem. Soc. 1975; 122:
358-363.
S.S., Conway B.E., Belliveau T.F. Specificity of Anodic Processes in Cyclic
Voltammetry to the Type of Carbon Used in Electrolysis of Cryolite – Alumina Melts”,
J. Appl. Electrochem., 1994; 24: 827-834.
Picard G., Prat E.C. Evidencing the Electrochemical Mechanism at carbon Bath Interface
by Means of Impedance Measurements: An Improved Approach to the Aluminum
Reduction Process In Light Metals, Zabreznik R.D. ed. The Metallurgical Society,
pp.507-517, Warrendale, Pennsylvania, 1987.
Vogt H. Effect of Alumina Concentration on the Incipience of the Anode Effect in
Aluminium Electrolysis. J. Appl, Electrochem., 1999; 29: 779-788.
Ballehang K., Oye H.A. Inert Anodes for Aluminium Electrolysis in Hall Héroult Cells.
Aluminium, 1981; 57: 146-150.
Olsen E., Thonstad J. Nickel Ferrite as Inert Anodes in Aluminium Electrolysis. J. Appl.
Electrochem., 1999; 29: 293-311.