D. Thermoelectric and Thermomagnetic Effects 533
transport entropy of conventional superconductors is 2-3 orders of magnitude
larger than the transport entropy in HTS materials. Among the cuprates, the data
frequently differ by a wide margin, and it is important to understand why such
large discrepancies may arise. First of all, the transport entropy is sensitive to the
temperature and magnetic field, and because the superconducting transition
temperature may differ by several degrees even among the same family of
cuprates, a direct comparison of the respective transport entropies at a particular
fixed temperature is not very revealing or meaningful. It is more practical to make
use of the transport energy per unit vortex length,
U4) - TS4),
and specifically its
temperature derivative,
dU4)/dT,
at a fixed value of the magnetic field. This
approach tends to suppress the influence of different Tc's among the family of
cuprates. The values of the transport entropy obtained by this procedure are
collected in Table 10.5.
References for Section D
J. L. Cohn, E. E Skelton, S. A. Wolf, and J. Z. Liu,
Phys. Rev. B
45 13140 (1992).
A. Dascoulidou, M. Galffy, C. Hohn, N. Knauf, and A. Freimuth,
Physica C
201,202 (1992).
A. Freimuth, in
Selected Topics in Superconductivity, Frontiers of Solid State Science,
Vol. 1 (L. C.
Gupta and M. S. Multani, Eds.). World Scientific, Singapore, 1992.
M. Galffy, A. Freimuth, and U. Murek,
Phys. Rev. B
41, 11029 (1990).
H. Ghamlouch and M. Aubin M,
Physica C,
269, 163 (1996).
V. L. Ginzburg,
Sov. Phys. Usp.
34, 101 (1991).
H. J. Goldsmid,
Electronic Refrigeration.
Pion Limited, 1986.
H. Haensel, A. Beck, E Gollnik, R. Gross, R. P. Huebener, and K. Knorr,
Physica C
244, 389 (1995).
S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester, and J. Talvacchio,
Phys. Rev. B
42, 6777 (1990).
S. J. Hagen, C. J. Lobb, R. L. Greene, and M. Eddy,
Physica C
185, 1769 (1991).
Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P. Malozemoff, and E Holtzberg,
Phys. Rev. B
43
2844 (1991).
C. Hohn, M. Galffy, A. Dascoulidou, A., Freirnuth, H. Soltner, and U. Poppe, Z.
Phys. B--Condensed
Matter
85, 161 (1991).
C. Hohn, M. Galffy, and A. Freimuth,
Phys. Rev. B
50, 15875 (1994).
R. E Huebener,
Magnetic Flux Structures in Superconductors.
Springer-Verlag, Berlin, 1979.
R. P. Huebener, A. V. Ustinov, and V. K. Kaplunenko,
Phys. Rev. B
42, 4831 (1990).
R. P. Huebener, E Kober, H.-C. Ri, K. Knorr, C. C. Tsuei, C. C. Chi, and M. R. Scheuermann,
Physica
C 181, 345 (1991).
X. Jiang, W. Jiang, S. N. Mao, R. L. Greene, T. Venkatesan, and C. J. Lobb,
Physica C
254, 175 (1995).
A. B. Kaiser,
Phys. Rev. B
35, 4677 (1987).
A. B. Kaiser and C. Uher, in
Studies of High Temperature Superconductors,
Vol. 7 (A. V. Narlikar, Ed.),
p. 353. Nova Science, New York, 1991.
E Kober, H.-C. Ri, R. Gross, D. Foelle, R. P. Huebener, and A. Gupta,
Phys. Rev. B
44, 11951 (1991).
K. Krishana, J. M. Harris, and N. P. Ong,
Phys. Rev. Lett.
75, 3529 (1995).
H. Lengfellner, A. Schnellbogl, J. Betz, W. Prettl, and K. E Renk,
Phys. Rev. B
42, 6264 (1990).
G. Yu. Logvenov, M. Hartmann, and R. P. Huebener,
Phys. Rev. B
46, 11102 (1992).
K. Maki,
Physica
55, 124 (1971).
E. A. Meilikhov and R. M. Farzetdinova,
J. Supercond.
7, 897 (1994).
S. D. Obertelli, J. R. Cooper, and J. L. Tallon,
Phys. Rev. B
46, 14928 1992).
M. Oussena, R., Gagnon, Y. Wang, and M. Aubin,
Phys. Rev. B
46, 528 (1992).
T. T. M. Palstra, B. Batlogg, L. E Schneemeyer, and J. V. Waszczak,
Phys. Rev. Lett.
64, 3090 (1990).
H.-C. Ri, A. Kober, A. Beck, L. Alff, R. Gross, and R. E Huebener,
Phys. Rev. B
47, 12312 (1993).