B. Conduction Electron Transport 31
Table 2.1.
Characteristics of selected metallic elements [from Poole
et al.
(1995), p. 2]
n e
Radius Xtal
a
(1022) r s p, 77K p, 273K z, 77K r, 273K
Z Element Valence (A) type (A) \~m-~m 3 ] (A) (#f~ cm) (#f2 cm) (fs) (fs)
Kth
(w)
11 Na 1 0.97 bcc 4.29 2.65 2.08 0.8 4.2 170 32
19 K 1 1.33 bcc 5.23 1.40 2.57 1.38 6.1 180 41
29 Cu 1 0.96 fcc 3.61 8.47 1.41 0.2 1.56 210 27
47 Ag 1 1.26 fcc 4.09 5.86 1.60 0.3 1.51 200 40
41 Nb 1 0.67 bcc 3.30 5.56 1.63 3.0 15.2 21 4.2
20 Ca 2 0.99 fcc 5.58 4.61 1.73 3.43 22
38 Sr 2 1.12 fcc 6.08 3.55 1.89 7 23 14 4.4
56 Ba 2 1.34 bcc 5.02 3.15 1.96 17 60 6.6 1.9
13 A1 3 0.51 fcc 4.05 18.1 1.10 0.3 2.45 6.5 8.0
81 T1 3 0.95 bcc 3.88 10.5 1.31 3.7 15 9.1 2.2
50 Sn(W) 4 0.71 tetrg a = 5.82 14.8 1.17 2.1 10.6 11 2.3
c=3.17
82 Pb 4 0.84 fcc 4.95 13.2 1.22 4.7 19.0 5.7 1.4
51 Sb 5 rhomb 4.51 16.5 1.13 8 39 2.7 0.55
83 Bi 5 rhomb 4.75 14.1 1.19 35 107 0.72 0.23
1.38
1.0
4.01
4.28
0.52
2.06
~0.36
~0.19
2.36
0.5
0.64
0.38
0.18
0.09
a
Notation: a. lattice constant; n e. conduction electron density;
r s = (3~4tOne)l~3; p,
resistivity: ~, Drude
relaxation time; Kth, thermal conductivity; L =
pKth/T
is the Lorentz number; 7, electronic specific heat
parameter; m*. effective mass; R H, Hall constant; | Debye temperature; %, plasma frequency in radians
per femtosecond (10-15s); IP, first ionization potential; WF, work function;
Ev,
Fermi energy; T F, Fermi
temperature in kilokelvins;
k v,
Fermi wavenumber in mega reciprocal centimeters; and
vv,
Fermi velocity in
centimeters per microsecond.
The resistivity p(T) of a typical metal has a temperature-independent
impurity contribution Po and a temperature-dependent phonon contribution
Pph(T), and these add by Matthiessen's rule,
/9(T) =/90 -3 t-/gph(T), (7)
where Po is the controlling factor at very low temperatures. We see from the data
in columns 11 and 12 of Table 2.1 that the collision time decreases with the
temperature; it has the temperature dependences r ~ T -3 for T << ~D and
~ T -1 for T >> ~D, where ~D is the Debye temperature. The dominance of
scattering in the forward direction for T << ~i~ introduces the additional factor T 2
leading to the Bloch T 5 law Pph(T)- AT 5. Umklapp processes, phonon drag,
and other factors can cause deviations from this T 5 law. We obtain the limiting
behaviors
p(T) ,~ Po + ATS, T
<< O D
(8a)
p(T) ~ Po
+
A'T, T >> O o. (8b)
Figure 2.1 shows the temperature dependence of the resistivity of a high purity
(low Po) and a lower purity (larger Po) good conductor. Typical resistivities at