456 ADÁNYI ET AL.
Harwood, G.W.J. and Pouton, C.W. (1996) Amperometric enzyme biosensors for metabolites the analysis
of drugs and metabolites. Adv. Drug Deliver. Rev. 18, 163–191.
Hasebe, Y. and Uchiyama, S. (2000). Amperometric flow-type L-histidine sensor using an immobilized
galactose oxidase reactor, based on a novel catalytic activity induced by exogenous histidine. Sensor.
Actuat. B-Chem. 66, 12–15.
Hilhorst, R., Dunnewind, B., Orsel, R., Stegeman, P., van Vliet, T., Gruppen, H. and Schols, H.A.
(1999) Baking performance, rheology, and chemical composition of wheat dough and gluten affected
by xylanase and oxidative enzymes. J. Food Sci. 64, 808–813.
Hill, K.J., Kaszuba, M., Creeth, J.E. and Jones, M.N. (1997) Reactive liposomes encapsulating a glucose
oxidase-peroxidase system with antibacterial activity. Biochim. Biophys. Acta 1326, 37–46.
Horozova, E., Dimcheva, N. and Jordanova Z. (2002) Study of catalase electrode for organic peroxidase
assays. Bioelectrochemistry 58, 181–187.
Indrani, D., Prabhasankar, P., Rajiv, J. and Rao, G.V. (2003) Scanning electron microscopy, rheological
characteristics, and bread-baking performance of wheat-flour dough as affected by enzymes. J. Food
Sci. 68, 2804–2809.
Inouye, Y., Taguchi, K., Fuji, A., Ishimaru, K., Nakamura, S. and Nomi, R. (1982) Chem. Pharm. Bull.
(Tokyo) 30, 951–958.
Isaksen, A. and Adler-Nissen, J. (1997) Antioxidative effect of glucose oxidase and catalase in mayon-
naises of different oxidative susceptibility. I. Product trials. LWT-Food Sci. Technol. 30, 841–846.
Ito, N., Phillips, S.E., Stevens, C., Ogel, Z.B., McPherson, M.J., Keen, J.N., Yadav, K.D. and Knowles,
P.F. (1991) Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase. Nature
350, 87–90.
Jacquot, M. and Poncelet, D. (2003) Multienzymic system encapsulation: application to the lactoperox-
idase system. J. Chem. Chem. Eng. Tech. 12, 581–584.
Jafar, S.S., Hulton, H.O., Bimbo, A.P., Crowther, J.B. and Barlow, S.M. (1994) Stabilization by antiox-
idants of mayonnaise made from fish oil. J. Food Lipids 1, 295–311.
Jawaheer, S., White, S.F, Rughooputh, S.D.D.V. and Cullen D.C. (2003) Development of a common
biosensor format for an enzyme based biosensor array to monitor fruit quality. Biosens. Bioelectron.
18, 1429–1437.
Johansen, C., Falholt, P. and Gram, L. (1997) Enzymatic removal and disinfection of bacterial biofilms.
Appl. Environ. Microbiol. 63, 3724–3728.
Jones, M.N., Hill, K.J., Kaszuba, M. and Creeth, J.E. (1998) Antibacterial reactive liposomes encapsu-
lating coupled enzyme systems. Int. J. Pharm. 162, 107–117.
Joo, H., Yoo, Y.J. and Ryu, D.D.Y. (1996) A biosensor stabilized by polyethylene glycol for monitoring
of hydrogen peroxide in organic solvent media. Enzyme Microb. Tech. 19, 50–56.
Klibanov, A.M., Alberti, B.N. and Marletta, M.A. (1982) Stereospecific oxidation of aliphatic alcohols
catalyzed by galactose oxidase. Biochem. Biophys. Res. Commun. 108, 804–808.
Klotz, M.G. and Klassen, G.R. and Loewen, P.C. (1997) Phylogenetic relationships among prokaryotic
and eukaryotic catalases. Mol. Biol. Evol. 14, 951–958.
Kona, R.P., Qureshi, N. and Pai, J.S. (2001) Production of glucose oxidase using Aspergillus niger and
corn steep liquor. Bioresource Technol. 78, 123–126.
Kotzian, P., Brázdilová, P., Kalcher, K. and Vytras, K. (2005). Determination of hydrogen peroxide,
glucose and hypoxanthine using (bio)sensors based on ruthenium-dioxide modified screen-printed
electrodes. Anal. Lett. 38, 1099–1113.
Kou, S., Tagoyama, Y., Yamazumi, T. and Yamamoto, H. (1998) Catalase and its production. Patent
No.: JP10257883.
Kraulis, P.J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein
structures. J. Appl. Cryst. 24, 946–950.
Leiter, É., Marx, F., Pusztahelyi, T., Haas, H. and Pócsi, I. (2004) Penicillium chrysogenum glucose
oxidase - a study on its antifungal effects. J. Appl. Microbiol. 97, 1201–1209.
Malherbe, D.F., du Toit, M., Cordero Otero, R.R., van Rensburg, P. and Pretorius, I.S. (2003) Expression
of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applica-
tions in wine production. Appl. Microbiol. Biot. 61, 502–511.