List of Figures XXIII
7.13 Heat exchanger – setpoint tracking with the PI controller . . . . 272
7.14 PI control with setpoint w = 1 and several values of T
I
......273
7.15 Graphical representation of derivative controller effects. . . . . . . 273
7.16 PD control with setpoint w = 1 and several values of T
D
.....274
7.17 Closed-loop system with a two degree-of-freedom controller . . . 276
7.18 Windup phenomenon. (a) Problem, (b) Solution . . . . . . . . . . . . 278
7.19 Anti-windup controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.20 Step responses of selected standard transfer functions . . . . . . . . 282
7.21 The PID controller tuned according to Strejc . . . . . . . . . . . . . . . 285
7.22 Heat exchanger control using pole placement design . . . . . . . . . 287
7.23 Closed-Loop system with a relay . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.24 PID control tuned with the Ziegler-Nichols method . . . . . . . . . . 290
7.25 PID control using the
˚
Astr
¨
om-H
¨
agglund method . . . . . . . . . . . . 293
8.1 Optimal trajectories of input and state variables of the heat
exchanger ..............................................306
8.2 Trajectories of P (t) for various values of r ..................310
8.3 Optimal feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
8.4 Twoheatexchangersinseries.............................312
8.5 Simulink program to simulate feedback optimal control in
Example8.3............................................315
8.6 LQ optimal trajectories x
1
, x
2
, u
1
of heat exchangers . . . . . . . . 315
8.7 Optimal LQ output regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
8.8 Optimal trajectory in n-dimensional state space . . . . . . . . . . . . . 323
8.9 Optimal trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
8.10 Time scale with time intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
8.11 Block diagram of the closed-loop system with a state observer 335
8.12 Scheme of an observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
8.13 State feedback with observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
8.14 Block diagram of state estimation of a singlevariable system . . 347
8.15 Polynomial state estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
8.16 Interpretation of a pseudo-state . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
8.17 Realisation of a state feedback with an observer . . . . . . . . . . . . . 348
8.18 State feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
8.19 Feedback control with one-degree-of-freedom controller . . . . . . . 350
8.20 Closed-loop system with a pure integrator . . . . . . . . . . . . . . . . . . 355
8.21 State feedback control with state observation and reference
input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
8.22 Feedback control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.23 Block diagram of the parametrised controller . . . . . . . . . . . . . . . 370
8.24 State feedback controller with observer. . . . . . . . . . . . . . . . . . . . . 370
8.25 State parametrised controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
8.26 Closed-loop system response to the unit step disturbance on
input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.27 Parametrised controlled system in the closed-loop system . . . . 374
8.28 Discrete-time feedback closed-loop system . . . . . . . . . . . . . . . . . . 376