468 References
M. Huba. Constrained pole assignment control. In L. Menini, L. Zaccarian,
and C. T. Abdallah, editors, Current Trends in Nonlinear Systems and
Control, pages 395 – 398. Birkh
¨
auser, Boston, 2006a.
M. Huba. Theory of Automatic Control 3. Constrained PID Control.STU
Press, Bratislava, 2006b. (in Slovak).
P. Hudzoviˇc. Identifcation and Modelling.ESSV
ˇ
ST, Bratislava, 1986. (in
Slovak).
A. Hurwitz.
¨
Uber die Bedinungen, unter welchen eine Gleichung nur Wurzeln
mit negativen reellen Teilen besitzt. Math. Annalen, 46:273 – 284, 1895.
J. Ingham, I. J. Dunn, E. Henzle, and J. E. Pˇrenosil. Chemical Engineering
Dynamics. VCH Verlagsgesselschaft, Weinheim, 1994.
R. Isermann. Digitale Regelsysteme. Springer Verlag, Berlin, 1977.
V. A. Ivanov, V. S. Medvedev, B. K.
ˇ
Cemodanov, and A. S. Juˇsˇcenko. Mathe-
matical Foundations of Theory of Automatic Control. Vol II.Vyˇsˇsaja ˇskola,
Moskva, 1977. (in Russian).
M. Jamshidi, M. Tarokh, and B. Shafai. Computer-aided Analysis and Design
of Linear Control Systems. Prentice Hall, Englewood Cliffs, New Jersey,
1992.
J. Jeˇzek. Symmetric matrix polynomial equations. Kybernetika, 22:19 – 30,
1986.
J. Jeˇzek and V. Kuˇcera. Efficient algorithm for matrix spectral factorization.
Automatica, 21:663 – 669, 1985.
E. I. Jury. Digital Control Design. GIFML, Moskva, 1963. (in Russian).
V. V. Kafarov, V. L Perov, and B. P. Meˇsalkin. Principles of Mathematical
Modelling of Systems in Chemical Technology. Chimija, Moskva, 1974. (in
Russian).
T. Kailaith. Linear Systems. Prentice Hall, Englewood Cliffs, New Jersey,
1980.
P. L. Kalman, R. E. Falb and M. Arib. Examples of Mathematical Systems
Theory. Mir, Moskva, 1971. (in Russian).
R. E. Kalman. On the general theory of control systems. In Proc. First IFAC
Congress, Moscow, Butterworths, volume 1, pages 481 – 492, 1960a.
R. E. Kalman. Contribution to the theory of optimal control. Boletin de la
Sociedad Matematica Mexicana, 5:102–119, 1960b.
R. E. Kalman. When is a linear system optimal? Trans. ASME, Series D,
Journal of Basic Engn., pages 51–60, 1964.
R. E. Kalman and J. E. Bertram. Control system analysis and design via the
second method of Lyapunov. J. Basic Engineering, 82:371 – 399, 1960.
R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. J. Basic Engr., 83:95 – 100, 1961.
R. E. Kalman, Y. C. Ho, and K. S. Narendra. Controllability of linear dynam-
ical systems in contributions to differential equations. Interscience Publish-
ers, V1(4):189 – 213, 1963.
L. B. Koppel. Introduction to Control Theory with Application to Process
Control. Prentice Hall, Englewood Cliffs, New Jersey, 1968.