2.7 Exercises 47
V. V. Kafarov, V. L Perov, and B. P. Meˇsalkin. Principles of Mathematical
Modelling of Systems in Chemical Technology. Chimija, Moskva, 1974. (in
Russian).
G. Stephanopoulos. Chemical Process Control, An Introduction to Theory and
Practice. Prentice Hall, Englewood Cliffs, New Jersey, 1984.
D. Chm´urny, J. Mikleˇs, P. Dost´al, and J. Dvoran. Modelling and Control of
Processes and Systems in Chemical Technology. Alfa, Bratislava, 1985.
(in Slovak).
W. L. Luyben. Process Modelling, Simulation and Control for Chemical En-
gineers. McGraw Hill, Singapore, 2 edition, 1990.
B. Wittenmark, J. K.
˚
Astr
¨
om, and S. B. Jørgensen. Process Control. Lund
Institute of Technology, Technical University of Denmark, Lyngby, 1992.
J. Ingham, I. J. Dunn, E. Henzle, and J. E. Pˇrenosil. Chemical Engineering
Dynamics. VCH Verlagsgesselschaft, Weinheim, 1994.
Mathematical models of unit processes are also given in many journal
articles. Some of them are cited in books above. These are completed by
articles dealing with bioprocesses:
J. Bhat, M. Chidambaram, and K. P. Madhavan. Robust control of a batch-fed
fermentor. Journal of Process Control, 1:146 – 151, 1991.
B. Dahhou, M. Lakrori, I. Queinnec, E. Ferret, and A. Cherny. Control of
continuous fermentation process. Journal of Process Control, 2:103 – 111,
1992.
M. Rauseier, P. Agrawal, and D. A. Melichamp. Non-linear adaptive control
of fermentation processes utilizing a priori modelling knowledge. Journal
of Process Control, 2:129 – 138, 1992.
Some works concerning definitions and properties of systems:
L. A. Zadeh and C. A. Desoer. Linear System Theory - the State-space Ap-
proach. McGraw-Hill, New York, 1963.
E. D. Gilles. Systeme mit verteilten Parametern, Einf
¨
uhrung in die Regelungs-
theorie. Oldenbourg Verlag, M
¨
unchen, 1973.
V. Strejc. State-space Theory of Linear Control. Academia, Praha, 1978. (in
Czech).
A. A. Voronov. Stability, Controllability, Observability. Nauka, Moskva, 1979.
(in Russian).
2.7 Exercises
Exercise 2.1:
Consider the liquid storage tank shown in Fig. 2.13. Assume constant liquid
density and constant flow rate q
1
. Flow rate q
2
can be expressed as