718 VIa Applications: Heat Exchangers
dary-side thermal resistance is negligible (A
o
)
Guess
= C
3
/C
1
). Upon solving Equa-
tion VIa.5.7, we can find the average tube length from L = A
o
/(
π
d
o
N).
Example VIa.5.1. The following data are given for a steam generator. Find a)
the average tube length L
tube
, b) tube side pressure drop, and c) shell side flow rate.
Data: d
i
= 0.654 in, d
o
= 0.75 in, T
h,in
= 604 F, T
h,out
= 550 F, P
h
= 2250 psia, P
c
=
850 psia, k
s
= 11.00 Btu/ft·h·F, N
tube
= 8485,
i
m
= 61E6 lbm/h, C
fs
= 0.015, c
p,o
=
1.24 Btu/lbm·F, f
i
= 0.0002437 ft
2
·h·F/Btu, f
o
= 0.0 ft
2
·h·F/Btu.
Solution: The solution, in a FORTRAN program, is included on the accompany-
ing CD-ROM.
The input data and results of calculation are summarized below.
Table VIa.5.1. Pertinent steam generator thermal hydraulic data
Total rate of heat transfer (Btu/h - MW):........................................ 4.386E9 - 1285.5
Tube inlet temperature (F - C): ....................................................... 604 - 318
Tube exit temperature (F - C):......................................................... 550 - 288
Tube-side pressure (psia - MPa): .................................................... 2250 - 15.51
Tube bundle-side pressure (psia - MPa):......................................... 850 - 5.86
Tube bundle-side temperature (F - C):............................................ 525.2 - 274
Total number of tubes: .................................................................... 8485
Tube outside diameter (in - mm):.................................................... 0.75 - 19.05
Tube wall thickness (in - mm): ....................................................... 0.048 - 1.22
Tube inside diameter (in - mm)....................................................... 0.654 - 16.61
Tube average heated length (ft - m): ............................................... 54.16 - 16.5
Tube heat transfer area (ft
2
- m
2
):.................................................... 90,232 - 8383
Overall heat transfer coefficient (Btu/h·ft
2
·F - W/m
2
·C): ................ 1041 - 183.3
The log mean temperature difference, ∆T
LMTD
(F - C): ................... 46.7 - 25.9
Effectiveness:.................................................................................. 0.684
Tube-side thermal resistance (h·ft
2
·F/Btu - m
2
·C/W): ..................... 0.0001744 - 0.00099
Tube-wall thermal resistance (h·ft
2
·F/Btu - m
2
·C/W):..................... 0.0003950 - 0.00224
Tube bundle-side thermal resistance (h·ft
2
·F/Btu - m
2
·C/W): ......... 0.0001475 - 0.00084
Tube-side fouling resistance (h·ft
2
·F/Btu - m
2
·C/W):...................... 0.000 - 0.000
Tube bundle-side fouling resistance (h·ft
2
·F/Btu - m
2
·C/W):.......... 0.0002437 - 0.00138
An alternative derivation for determination of the required surface area for the
tubes takes into account the energy balance for an elemental control volume due to
the change in temperature from tube inlet to tube exit (Nahavandi). Similar corre-
lations can then be used for heat transfer coefficients and the resulting differential
equation is integrated from tube inlet to tube outlet to obtain the required surface
area. (see Problem VIa.18).
In steam generators, we often need to find the temperature of the hot fluid as it
moves inside the tubes and transfers energy to the secondary side. This is shown
in the next example.