66
2
ˆ
–
Y
l,m
( , ), l m,
m m = 0, ±1, ±2, … ±l.
(3.4) (3.2), (3.5) (3.6)
R(r) :
0R
r
)1(
r4
Ze
E
m2
dr
dR
r
dr
d
r
1
2
0
2
2
2
2
=⋅
+
−
πε
++⋅
ll
(3.7)
,
, > 0,
( ). < 0
, :
22
0
2
42
n
nh8
meZ
E
ε
−= , (3.8)
n = 1, 2, … n l + 1. (3.9)
(3.7)
n, l R
n,l
(r). ,
ϕθ⋅=ϕθΨ ,YrR,,r
m,,nm,,n lll
n, l, m.
n (n = 1, 2, 3…).
(3.8) n . l
;
(3.6) (3.9) l = 0, 1, 2, …(n - 1)
)1(L +⋅= ll (3.10)
l:
l
1
2
3
…
s
p
d
f
…
m (m = 0, ±1,
±2, ±3, …±l )
( Z).
mL
z
(3.11)
.
, ,
,
, .
)1s(sS +⋅⋅= , (3.12)
s = 1/2.