Sputter Deposition Processes 295
References
[1] The Web of Science is part of the ISI Web of Knowledge Platform produced by Thompson Scientific.
Available from: <http://apps.isiknowledge.com/>.
[2] The patent database Delphion is part of the Thomson Corporation. Available from:
<http://www.delphion.com>.
[3] G. Carter, J.S. Colligan, Ion Bombardment of Solids, American Elsevier, New York (1968).
[4] L.I. Maissel, Applications of sputtering to the deposition of films, in: L.I. Maissel, R. Glang (Eds.), Handbook
of Thin Film Technology, McGraw-Hill, New York (1970).
[5] G.K. Wehner, G.S. Anderson, The nature of physical sputtering, in: L.I. Maissel, R. Glang (Eds.), Handbook
of Thin Film Technology, McGraw-Hill, New York (1970).
[6] M. Nastasi, J. Mayer, J.K. Hirvonen, Ion–Solid Interactions: Fundamentals and Applications, in: Cambridge
Solid State Science Series, Cambridge University Press, Cambridge (2004).
[7] R. Behrish, W. Eckstein (Eds.), Sputtering by Particle Bombardment: Experiments and Computer
Calculations from Threshold to MeV Energies, Springer, Berlin (2007).
[8] R.A. Baragiola, Phil. Trans. R. Soc. Lond. A 362 (2004) 29–53.
[9] V.S. Smentkowski, Prog. Surf. Sci. 64 (2000) 1–58.
[10] W.D. Westwood, Sputter deposition, AVS Education Committee Book Series, Vol. 2, AVS, New York (2003).
[11] H.H. Andersen, H.L. Bay, Sputter yield measurements, in: R. Behrish (Ed.), Topics in Applied Physics,
Vol. 47, Sputtering by Particle Bombardment I, Springer, Berlin (1983).
[12] Sigmund, Phys. Rev. 184 (1969) 383–416.
[13] T. Ono, T. Kenmotsu, T. Muramoto, Simulation of the sputtering process, in: D. Depla, S. Mahieu (Eds.),
Reactive Sputter Deposition, Springer, Berlin (2008).
[14] Y. Yamamura, H. Tawara, At. Data Nucl. Data Tables 62 (1996) 149.
[15] J.E. Mahan, A. Vantomme, J. Vac. Sci. Technol. A 15 (1997) 1976–1989.
[16] Stopping and Range of Ions in Matter, available from www.srim.org.
[17] J.F. Ziegler, J.P. Biersack, M.D. Ziegler, Stopping and Range of Ions in Matter, SRIM Co (2008).
[18] W. M
¨
oller, W. Eckstein, Nucl. Instr. Methods Phys. Res. B 2 (1984) 814–818.
[19] M.W. Thompson, Vacuum 66 (2002) 99–114.
[20] G. Falcone, Phys. Rev. B 28 (1988) 6398–6401.
[21] J.B. Malherbe, S. Hoffmann, J.M. Sanz, Appl. Surf. Sci. 27 (1986) 355–365.
[22] A. Anders, Surf. Coatings Technol. 200 (2005) 1893–1906.
[23] W.R. Grove, Phil. Trans. R. Soc. Lond. 142 (1852) 87–101.
[24] W.D. Davis, T.A. Vanderslice, Phys. Rev. 131 (1963) 219.
[25] M. Van Straaten, A. Bogaerts, R. Gijbels, Spectrochim. Acta B 50 (1995) 583–605.
[26] A. Bogaerts, M. Van Straaten, R. Gijbels, Spectrochim. Acta B 50 (1995) 179–196.
[27] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley &
Sons, New York (1994) 81.
[28] G. Buyle, Simplified model for the d.c. planar magnetron discharge, PhD thesis, Ghent University (2005)
(available from www.draft.ugent.be).
[29] A.V. Phelps, Z. Lj Petrovic, Plasma Sources Sci Technol. 8 (1999) R21.
[30] H. Hagstrum, Phys. Rev. 96 (1954) 336.
[31] D. Depla, S. Mahieu, R. De Gryse, invited review, Thin Solid Films 517 (2009) 2825–2839.
[32] D. Depla, G. Buyle, J. Haemers, R. De Gryse, Surf. Coatings Technol. 200 (2006) 4329–4338.
[33] J.W. Bradley, S. Thompson, Y. Aranda Gonzalvo, Plasma Sources Sci, Technol. 10 (2001) 490–501.
[34] I.V. Svadkovski, D.A. Golosov, S.M. Zavatskly, Vacuum 68 (2003) 283–290.
[35] I. Petrov, F. Adibi, J.E. Greene, W.D. Sproul, W.-D. Munz, J. Vac. Sci. Technol. A 10 (1992) 3283.
[36] G. Estes, W.D. Westwood, J. Vac. Sci. Technol. A 6 (1988) 1845.
[37] A. Furuya, S. Hirono, J. Appl. Phys. 68 (1990) 304.
[38] W.D. Sproul, D.J. Christie, D.C. Carter, Thin Solid Films 491 (2005) 1–17.