References
147
References
[1] M. Bernot, Optimal Transport and Irrigation, Thesis, Ecole Normale
Sup
´
erieure Cachan, 2005
[2] M. Bernot, V. Caselles and J.-M. Morel, Traffic Plans, Publ. Math., Vol. 49,
pp. 417–451, 2005
[3] Y. Brenier, Polar factorization and monotone rearrangement of vector-
valued functions, Comm. Pure Appl. Math. 44 , pp. 375–417, 1991
[4] G. Buttazzo and F. Santambrogio, AModelfortheOptimalPlanningofan
Urban Area, SIAM J. Math. Anal., Vol. 37, Nr. 2, pp. 514–530, 2005
[5] G. Buttazzo, E. Stepanov, OptimalTransportationNetworksasFreeDirichlet
Regions for the Monge–Kantorovich Problem, CVGMT, preprint, 2003
5
[6] L. Caffarelli, A localization property of viscosity solutions of the Monge-
Ampère equation, Annals of Math. 131, pp. 129–134, 1990
[7] L. Caffarelli, Interior W
2,p
estimates for Solutions of the Monge-Ampère
equation, Annals of Math. 131, pp. 135–150, 1990
[8] L. Caffarelli, Some regularity properties of solutions to the Monge-Ampère
equation, Comm. in Pure Appl. Math. 44, pp. 965–969, 1991
[9] L.C. Evans, Partial Differential Equations and Monge–Kantorovich Mass
Transfer, In: Current Developments in Mathematics 1997, ed. by S.T. Yau
6
[10] E.N. Gilbert, Minimum cost communication networks,BellSystemTech.J.
46, pp. 2209–2227, 1967
[11] L.V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR 37, pp.
227–229, 1942 (in Russian)
[12] L.V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk. 3, pp. 225–
226, 1948
[13] G. Monge, M
´
emoire sur la Th
´
eorie des Deblais et des Remblais, Histoire de
l’Acad. des Sciences de Paris, 1781
[14] C. Villani, Topics in Optimal Transportation, American Mathematical So-
ciety, in: Graduate Studies in Mathematics Series, vol. 58, 2003
[15] Q. Xia, Optimal paths related to transport problems,Commun.Contemp.
Math. 5(2), pp. 251–279, 2003
5
downloadable from the Preprint Server - http://cvgmt.sns.it/papers/gbuest03/
6
downloadable from http://www.math.berkeley.edu/∼evans/