Contents
ix
7.6.2.
Influence
of the
pre-
and
post-shocks
on the
time
history response
of a
one-degree-of-freedom system
220
7.6.3.
Incidence
on the
shock response spectra
223
8
Simulation
of
pyroshocks
227
8.1.
Simulations using pyrotechnic facilities
227
8.2. Simulation using metal
to
metal impact
230
8.3. Simulation using electrodynamic shakers
231
8.4. Simulation using conventional shock machines
232
9
Control
of a
shaker using
a
shock
response
spectrum
235
9.1. Principle
of
control
by a
shock response spectrum
235
9.1.1. Problems
235
9.1.2. Method
of
parallel
9.1.3. Current numerical methods
237
9.2. Decaying sinusoid
239
9.2.1. Definition
239
9.2.2.
Response spectrum
239
9.2.3. Velocity
and
displacement
242
9.2.4.
Constitution
of the
total signal
243
9.2.5. Methods
of
signal compensation
244
9.2.6.
Iterations
250
9.3. D.L. Kern
and
C.D. Hayes'
function
251
9.3.1. Definition
251
9.3.2.
Velocity
and
displacement
252
9.4. ZERD
function
253
9.4.1. Definition
253
9.4.1.1. D.K. Fisher
and
M.R. Posehn expression
253
9.4.1.2. D.O. Smallwood expression
254
9.4.2.
Velocity
and
displacement
255
9.4.3.
Comparison
of the
ZERD waveform with
a
standard decaying sinusoid
257
9.4.4. Reduced response spectra
257
9.4.4.1. Influence
of the
damping
n of the
signal
257
9.4.4.2. Influence
of the Q
factor
258
9.5. WAVSIN waveform
259
9.5.1.
Definition
259
9.5.2.
Velocity
and
displacement
260
9.5.3.
Response
of a
one-degree-of-freedom system
262
9.5.3.1. Relative response displacement
263
9.5.3.2. Absolute response acceleration
265
9.5.4. Response spectrum
265
9.5.5. Time history synthesis
from
shock spectrum
266
9.6.
SHOC waveform
267
9.6.1. Definition
267
filterss
236