I056
References
28. K. Takahashi, W. Nakayama, T. Senshu, and H. Yoshida, Heat transfer analysis of shell-and-tube
condensers with shell-side enhancement,
ASHRAE Trans. 90
(Part IB),
60
(1984).
29. R.
L.
Webb, Heat transfer surface having a high boiling heat transfer coefficient,
U.S.
Patent
3,696,861, October 10, 1972.
30.
K.
Fujie, W. Nakayama, H. Kuwahara, and K.
Kaluzaki,
Heat transfer wall for boiling liquids,
U.S.
Patent 4,060,125, November 29, 1977.
3
1. J. Arshad and J. R. Thome, Enhanced boiling surfaces-heat transfer mechanism and mixture boil-
ing,
ASME/JSME Joint Thermal Eng. Con$ Proc.,
Honolulu, Vol. 1, March 1983, pp. 191-197.
Bibliography
1.
J.
R. Thome,
Enhanced Boiling Heat Transfer,
Hemisphere, Washington, D.C., 1990.
2.
Carnavos,
T.
C., Some recent developments in augmented heat exchange elements, in
Heat Ex-
changers: Design and Theon Source Book,
Scripta, Washington, D.C., 1974, pp. 441 -489.
3.
Bergles, A. E., Enhancement of heat transfer, in
Heat Transfer-1978,
Vol. VI, Hemisphere, Wash-
ington, D.C., 1978, pp. 89-108.
4.
Bergles, A.
E.,
Junkhan,
G.
H.,
and Webb, R.
L.,
Energy conservation via heat transfer enhancement,
Paper No. EGY205,
1978
Midu*e.st Energy Conference,
Chicago, 19-2 1 November 1978, pp. 10-2 1.
5.
Webb, R.
L.,
and Bergles, A. E., Performance evaluation criteria for selection of heat transfer surface
geometries used in low Reynolds number heat exchangers, in
Low
Reynolds Number Flow Heat
E.uc*hangers
(S.
Kakac, R. K. Shah, and A. E. Bergles, eds.), Hemisphere, Washington, D.C., 1982
pp. 735-752.
6.
Webb, R.
L.,
Enhancement for extended surface geometries used in air cooled heat exchangers, in
LON~
Reynolds Number Flow Heat Exchangers (S.
Kakac, R. K. Shah, and A. E. Bergles, eds.),
Hemisphere, Washington, D.C., 1983, pp 721-734.
7.
Song-Jiu Deng et al., Heat transfer enhancement and energy conservation, Hemisphere Publishing
Corporation, New York.
CHAPTER
9
1.
Collier, J. G., Heat exchanger fouling and corrosion, in
Heat Exchangers: Thermal-Hydraulic Fun-
drimenrals and Design (S.
Kakac, A.
E.
Bergles, and F. Mayinger, eds.), Hemisphere, Washington,
D.C., 1981, pp. 999-101 1.
2.
Zelver, N., Roe,
F.
L.,
and Characklis, W.
G.,
Monitoring of fouling deposits in heat transfer tubes:
Case studies, in
Industrial Heat Exchangers Conference Proceedings
(A. J. Hayes, W. W. Liang,
S.
L.
Richlen, and E.
S.
Tabb, eds.), American Society for Metals, Metals Park,
Ohio,
1985, pp.
1985, 201-208.
3.
Bott,
T.
R.,
Fouling Notebook,
Institution of Chemical Engineers, London, 1990.
4.
Chenoweth,
J.
M., Final Report of the HTRVTEMA Joint Committee to Review the Fouling Section
of the TEMA Standards, Heat Transfer Research, Inc., Alhambra, Calif., 1988.
5.
Puckorius, P. R., Contolling deposits in cooling water systems,
Mater. Protect. Perform.,
Novem-
ber, 19-22 (1972).
6.
Mukherjee, R., Conquer heat exchanger fouling,
Hydrocarbon Processing,
January, 121
-
127
(1996).
7.
Silvestrini, R., Waste heat recovery: Heat exchanger fouling and corrosion,
Chem. Eng. Prog.,
December, 29-35 (1979).
8.
Epstein, N., Fundamentals of heat transfer surface fouling: With special emphasis on laminar
flow,
in
hrr*
Reynolds Number Flow Heat Exchangers
(S.
Kakac, R.
K.
Shah, and A. E. Bergles, eds.),
Hemisphere, Washington, D.C., 1982, pp. 95 1-964.
9.
O'Callaghan, M., Fouling of heat transfer equipment: Summary review, in
Heat Exchangers:
Ther-
md-Hydrrrulic Fundamentals and Design (S.
Kakac, A. E. Bergles, and F. Mayinger, eds.), Hemi-
sphere, Washington, D.C., 1981, pp. 1037-1047.