Файлы
Обратная связь
Для правообладателей
Найти
Коткин Г.Л., Сербо В.Г., Черных А.И. Лекции по аналитической механике
Файлы
Академическая и специальная литература
Физика
Механика
Назад
Скачать
Подождите немного. Документ загружается.
V
(
t
)
=
˙
R
(
t
)
K
′
K
′
L
′
(
r
′
,
˙
r
′
,
t
)
=
m
2
(
˙
r
′
+
V
(
t
))
2
−
U
(
R
(
t
)
+
r
′
)
,
(17
.
1)
K
′
m
¨
r
′
=
−
∂
U
∂
r
′
−
m
W
,
(17
.
2)
W
=
˙
V
(
t
)
K
′
K
′
(
−
m
W
)
“
“
K
′
(
x
′
,
y
′
,
z
′
)
Ω
=
Ω
(
t
)
K
(
x,
y
,
z
)
x
′
=
y
′
=
z
′
=
0
x
=
y
=
z
=
0
r
K
r
′
K
′
x,
y
,
z
x
′
,
y
′
,
z
′
K
′
K
v
=
[
Ω
,
r
]
=
[
Ω
,
r
′
]
K
′
v
′
[
Ω
,
r
′
]
r
=
r
′
,
v
=
v
′
+
[
Ω
,
r
′
]
.
(17
.
3)
L
′
(
r
′
,
v
′
,
t
)
L
′
(
r
′
,
v
′
,
t
)
=
1
2
m
(
v
′
)
2
+
m
v
′
[
Ω
,
r
′
]+
1
2
m
[
Ω
,
r
′
]
2
−
U
(
r
′
)
.
(17
.
4)
p
′
=
∂
L
′
∂
v
′
=
m
(
v
′
+
[
Ω
,
r
′
])
,
M
′
=
r
′
×
p
′
.
(17
.
5)
p
′
M
′
K
p
′
=
p
,
M
′
=
M
.
(17
.
6)
E
′
K
′
E
′
=
p
′
v
′
−
L
′
=
1
2
m
(
v
′
)
2
+
U
(
r
′
)
−
1
2
m
[
Ω
,
r
′
]
2
.
(17
.
7)
E
′
−
1
2
m
[
Ω
,
r
′
]
2
,
E
′
E
K
E
=
p
v
−
L
=
p
′
(
v
′
+
[
Ω
,
r
′
])
−
L
′
=
E
′
+
ΩM
′
.
(17
.
8)
d
dt
∂
L
′
∂
v
′
=
∂
L
′
∂
r
′
.
m
d
v
′
dt
=
−
∂
U
∂
r
′
+
2
m
[
v
′
,
Ω
]
+
m
[
Ω
,
[
r
′
,
Ω
]]
+
m
[
r
′
,
˙
Ω
]
.
(
17
.
9)
−
∂
U
/∂
r
′
2
m
[
v
′
,
Ω
]
,
m
[
Ω
,
[
r
′
,
Ω
]]
m
[
r
′
,
˙
Ω
]
,
U
(
r
)
B
L
K
L
=
1
2
m
v
2
−
U
(
r
)
+
e
c
vA
(
r
)
,
(17
.
10)
e
A
(
r
)
A
(
r
)
=
1
2
[
B
,
r
]
.
(17
.
11)
K
′
Ω
K
r
r
′
v
v
′
K
K
′
L
′
K
′
L
′
=
1
2
m
(
v
′
+
[
Ω
,
r
′
])
2
−
U
(
r
′
)
+
e
2
c
(
v
′
+
[
Ω
,
r
′
])
·
[
B
,
r
′
]
.
L
′
=
L
′
0
+
δ
L
′
,
L
′
0
=
1
2
m
(
v
′
)
2
−
U
(
r
′
)
,
(17
.
12)
δ
L
′
=
m
v
′
[
Ω
,
r
′
]
+
e
2
c
v
′
[
B
,
r
′
]
+
1
2
m
[
Ω
,
r
′
]
2
+
e
2
c
[
Ω
,
r
′
]
·
[
B
,
r
′
]
.
Ω
Ω
L
=
−
e
B
2
mc
,
(17
.
13)
B
δ
L
′
δ
L
′
=
−
e
2
8
mc
2
[
B
,
r
′
]
2
.
(17
.
14)
δ
L
′
K
′
U
(
r
′
)
U
(
r
)
=
−
α/r
B
E
<
0
K
′
K
B
x
U
L
=
1
2
m
˙
x
2
−
mg
x
2
l
,
(18
.
1)
m
l
x
M
k
m
ω
0
=
p
k
/
M
m
≪
M
x
“
L
0
=
1
2
M
˙
x
2
−
k
x
2
T
=
ρ
2
l
Z
0
v
2
(
ξ
)
dξ
.
ρ
=
m/l
l
(
t
)
v
(
ξ
)
=
˙
xξ
/l
ξ
T
=
m
˙
x
2
/
6
ω
=
s
k
M
+
(
m/
3)
≈
r
k
M
1
−
m
6
M
.
(18
.
2)
“
q
˙
q
C
L
C
L
q
(
t
)
˙
q
L
¨
q
+
q
C
=
0
.
(18
.
3)
L
(
q
,
˙
q
)
=
1
2
L
˙
q
2
−
q
2
2
C
(18
.
4)
q
E
=
1
2
L
˙
q
2
+
q
2
2
C
.
(18
.
5)
q
˙
q
“
“
x
k
C
L
(
x
)
L
C
L
(
x,
q
,
˙
x,
˙
q
)
=
m
˙
x
2
2
+
L
(
x
)
˙
q
2
2
−
C
q
2
2
−
k
x
2
2
(18
.
6)
q
x
L
(
q
,
˙
q
)
=
T
(
q
,
˙
q
)
−
U
(
q
)
,
T
(
q
,
˙
q
)
=
1
2
a
(
q
)
˙
q
2
≥
0
.
(19
.
1 )
q
0
U
(
q
)
x
=
q
−
q
0
U
(
q
)
=
U
(
q
0
)
+
1
2
k
x
2
,
dU
dq
|
q
0
=
0
,
d
2
U
dq
2
|
q
0
=
k
>
0
(19
.
2)
k
=
0
a
(
q
)
q
0
a
(
q
)
=
m
+
O
(
x
)
,
m
=
a
(
q
0
)
.
(19
.
3)
‹
1
2
...
6
7
8
9
10
11
12
...
28
29
›