Файлы
Обратная связь
Для правообладателей
Найти
Коткин Г.Л., Сербо В.Г., Черных А.И. Лекции по аналитической механике
Файлы
Академическая и специальная литература
Физика
Механика
Назад
Скачать
Подождите немного. Документ загружается.
dE
dt
=
m
¨
x
+
dU
(
x
)
dx
˙
x
=
0
.
x
(
t
)
E
=
1
2
mv
2
0
+
U
(
x
0
)
,
dx
dt
=
±
r
2
m
[
E
−
U
(
x
)]
(
˙
x
≷
0)
(1
.
3)
t
=
±
r
m
2
Z
x
x
0
dx
p
E
−
U
(
x
)
+
t
0
.
(1
.
4)
x
1
x
2
x
3
x
U
E
U
m
x
m
x
i
U
(
x
i
)
=
E
v
i
=
0
a
i
=
−
U
′
(
x
i
)
/m
U
m
T
=
E
−
U
(
x
)
>
0
E
<
U
m
x
1
<
x
<
x
2
x
>
x
3
a
1
,
2
,
3
6
=
0
a
1
,
3
>
0
a
2
<
0
x
1
,
2
,
3
x
1
<
x
<
x
2
T
=
√
2
m
Z
x
2
x
1
dx
p
E
−
U
(
x
)
.
(1
.
5)
x
>
x
3
E
=
U
m
x
m
F
x
(
x
m
)
=
−
U
′
(
x
m
)
/m
=
0
U
′
(
x
m
)
=
0
U
′′
(
x
m
)
6
=
0
x
m
U
(
x
)
=
U
m
+
1
2
U
′′
(
x
m
)
(
x
−
x
m
)
2
+
.
.
.
,
U
′′
(
x
m
)
<
0
x
m
x
(
t
)
=
x
m
−
(
x
m
−
x
0
)
e
−
λ
(
t
−
t
0
)
,
λ
=
r
−
U
′′
(
x
m
)
m
,
x
(
t
)
→
x
m
t
→
∞
x
m
E
→
U
m
m
x
>
0
U
(
x
)
=
V
a
2
x
2
1
−
a
x
2
U
(
x
)
=
−
Ax
4
U
(
x
)
=
−
k
x
2
x
dw
x,
x
+
dx
dt
dw
=
2
dt/T
dw
(
x
)
/dx
U
(
x
)
=
mω
2
x
2
/
2
a
U
(
r
)
≡
U
(
r
)
U
(
r
)
“
F
=
−
∂
U
∂
r
=
−
dU
dr
r
r
E
=
1
2
m
v
2
+
U
(
r
)
,
(2
.
1)
M
=
m
[
r
,
v
]
,
(2
.
2)
d
M
dt
=
[
r
,
F
]
=
0
.
M
xy
r
ϕ
E
=
1
2
m
˙
r
2
+
1
2
m
(
r
˙
ϕ
)
2
+
U
(
r
)
,
(2
.
3)
∂
∂
r
≡
∂
∂
x
,
∂
∂
y
,
∂
∂
z
.
ϕ
r
˙
r
r
˙
ϕ
v
x
M
=
(0
,
0
,
M
)
,
M
=
mr
2
˙
ϕ
.
˙
ϕ
E
=
1
2
m
˙
r
2
+
U
(
r
)
,
U
(
r
)
=
U
(
r
)
+
M
2
2
mr
2
.
(2
.
5)
U
(
r
)
M
2
/
(2
mr
2
)
dr
dt
=
±
r
2
m
[
E
−
U
(
r
)]
(
˙
r
≷
0)
dt
=
±
r
m
2
dr
p
E
−
U
(
r
)
,
(2
.
6)
t
(
r
)
t
=
±
r
m
2
Z
r
r
0
dr
p
E
−
U
(
r
)
+
t
0
.
r
(
t
)
x
(
t
)
U
(
x
)
U
(
r
)
r
i
U
(
r
i
)
=
E
˙
r
i
=
0
¨
r
i
=
−
U
′
(
r
i
)
/m
r
i
U
r
U
x
E
<
U
m
r
1
<
r
<
r
2
r
>
r
3
T
r
=
√
2
m
Z
r
2
r
1
dr
p
E
−
U
(
r
)
.
(2
.
7)
dt
=
mr
2
M
dϕ
.
dt
ϕ
=
±
M
√
2
m
Z
r
r
0
dr
r
2
p
E
−
U
(
r
)
+
ϕ
0
.
(2
.
8)
˙
ϕ
=
M
/
(
mr
2
)
r
i
r
i
r
1
r
2
T
ϕ
<
T
r
T
ϕ
>
4
T
r
T
ϕ
T
ϕ
<
T
r
T
ϕ
>
4
T
r
dt
r
d
r
=
v
dt
dϕ
“
r
r
+
d
r
dS
=
r
2
dϕ/
2
dS
dt
=
1
2
r
2
˙
ϕ
,
(2
.
9)
M
=
2
m
dS
dt
,
(2
.
10)
U
(
r
)
=
−
αr
−
n
n
≥
2
r
U
(
r
)
=
−
α
r
.
(3
.
1
a
)
α
=
Gm
m
m
m
G
α
=
e
2
U
(
r
)
=
−
α
r
+
M
2
2
mr
2
(3
.
2)
E
>
0
r
1
E
<
0
r
min
<
r
<
r
max
E
=
−
mα
2
/
(2
M
2
)
r
=
M
2
/
(
mα
)
ϕ
=
±
Z
M
r
2
dr
r
2
mE
+
2
mα
r
−
M
2
r
2
+
const
.
(3
.
3)
u
=
p
r
,
p
=
M
2
mα
,
(3
.
4)
ϕ
=
∓
Z
du
p
e
2
−
(
u
−
1)
2
+
ϕ
0
,
e
=
r
1
+
2
E
M
2
mα
2
.
(3
.
5)
ϕ
=
±
arccos
u
−
1
e
+
ϕ
0
,
r
=
p
1
+
e
cos(
ϕ
−
ϕ
0
)
.
ϕ
0
=
0
r
=
r
min
ϕ
=
0
r
=
p
1
+
e
cos
ϕ
,
(3
.
6)
e
p
r
1
r
m
in
r
m
a
x
r
E
1
E
2
U
(
r
)
U
(
r
)
=
−
α
r
+
M
2
2
mr
2
e
>
1
E
>
0
e
=
1
E
=
0
e
<
1
E
<
0
E
=
−
mα
2
/
(2
M
2
)
e
=
0
p
ϕ
=
π
/
2
p
=
M
2
mα
=
r
|
ϕ
=
π
/
2
.
U
(
r
)
=
α
r
,
(3
.
1
b
)
r
=
p
−
1
+
e
cos
ϕ
,
(3
.
6
b
)
e
p
‹
1
2
3
4
5
6
7
8
...
28
29
›