x ˙x =
˙q U(q
0
)
L(x, ˙x) =
1
2
m ˙x
2
−
1
2
kx
2
. (19.4)
m¨x + kx = 0 (19.5)
x = A cos(ωt + ϕ) (1 9 .6 )
−mω
2
+ k = 0 , (19.7)
ω =
r
k
m
. (19.8)
A ωt + ϕ ϕ
ω
T =
2π
ω
. (19.9)
m k ω
2
=
k/m
x A
L = T − U(q
1
, q
2
, . . . , q
s
) , T =
1
2
s
X
ij=1
a
ij
(q) ˙q
i
˙q
j
≥ 0 . (19.10)