
˙x
k
(t)=f
k
(x
1
,...,x
n
)+M
k
(t); k =1, 2,...,m− 1; m n,
˙x
k+1
(t)=f
k+1
(x
1
,...,x
n
)+u
k+1
+ M
k+1
(t);
.............................................
˙x
n
(t)=f
n
(x
1
,...,x
n
)+u
n
+ M
r
(t),
x
1
,...,x
n
u
k+1
,...,u
k
M
1
(t),...,M
r
(t)
r
˙z
j
(t)=g
i
(z
1
,...,z
r
,x
1
,...,x
n
),j=1,...,r.
M
1
(t),...,M
r
(t)
˙z
j
(t)=g
i
(z
1
,...,z
r
,x
1
,...,x
n
),j=1,...,r;
˙x
i
(t)=f
i
(x
1
,...,x
n
)+z
j
,i= r +1,...,m− 1;
˙x
i+1
(t)=f
i+1
(x
1
,...,x
n
)+u
i+1
+ z
j+1
;
..........................................
˙x
n
(t)=f
n
(x
1
,...,x
n
)+u
n
+ z
r
.
u(u
1
,...,u
m
)
ψ
s
(x
1
,...,x
n
,z
1
,...,z
r
)=0,s=1, 2,...,m,
ψ
s
=0
M
1
(t),...,M
r
(t)
J
Σ
=
∞
0
m
s=1
ϕ
2
s
(ψ
s
)+
m
s=1
T
2
s
˙
ψ
2
s
(t)
dt.