
References 399
O’Brien, R. M. (1994). Identification of simple measurement models with multiple latent vari-
ables and correlated errors. Sociological Methodology, 24, 137–170.
Olsson, U. H., Foss, T., & Breivik, E. (2004). Two equivalent discrepancy functions for maximum
likelihood estimation: Do their test statistics follow a non-central chi-square distribution
under model misspecification? Sociological Methods and Research, 32, 453–500.
Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and
WLS estimation in structural equation modeling under conditions of misspecification and
non-normality. Structural Equation Modeling, 7, 557–595.
Osborne, J. (2002). Notes on the use of data transformations. Practical Assessment, Research & Eval-
uation, 8(6). Retrieved February 23, 2009, from http://PAREonline.net/ getvn.asp?v=8&n=6
Pearl, J. (2000). Causality: Models, reasoning, and inference. New York: Cambridge University
Press.
Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated
approach. Hillsdale, NJ: Erlbaum.
Peng, C.Y. J., Harwell, M., Liou, S.M., & Ehman, L. H. (2007). Advances in missing data methods
and implications for educational research. In S. S. Sawilowsky (Ed.), Real data analysis (pp.
31–78). Charlotte, NC: Information Age Publishing.
Peng, C.-Y. J, Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis
and reporting. Journal of Educational Research, 96(1), 3–14.
Peters, C. L. O., & Enders, C. (2002). A primer for the estimation of structural equation models
in the presence of missing data. Journal of Targeting, Measurement and Analysis for Market-
ing, 11, 81–95.
Ping, R. A. (1996). Interaction and quadratic effect estimation: A two-step technique using struc-
tural equation analysis. Psychological Bulletin, 119, 166–175.
Preacher, K. J., & Coffman, D. L. (2006). Computing power and minimum sample size for RMSEA.
Retrieved November 15, 2009, from http://people.ku.edu/~preacher/rmsea/rmsea.htm
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interaction
effects in multiple linear regression, multilevel modeling, and latent curve analysis. Journal
of Educational and Behavioral Statistics, 31, 437–448.
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypoth-
eses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–227.
Provalis Research. (1995–2004). SimStat for Windows (Version 2.5.5) [Computer software].
Montréal, Québec, Canada: Author.
Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel structural equation modeling.
In S.-Y. Lee (Ed.), Handbook of computing and statistics with applications: Vol. 1. Handbook of
latent variable and related models (pp. 209–227). Amsterdam: Elsevier.
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25,
111–163.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). Thousand Oaks,
CA: Sage.
Raudenbush, S. W., Bryk, A. S., & Cheong, Y. F. (2008). HLM 6.06 for Windows [computer soft-
ware]. Lincolnwood, IL: Scientific Software International.
Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psycho-
logical Measurement, 21, 173–184.
Raykov, T. (2004). Behavioral scale reliability and measurement invariance evaluation using
latent variable modeling. Behavior Therapy, 35, 299–331.
Raykov, T., & Marcoulides, G. A. (2000). A first course in structural equation modeling. Mahwah,
NJ: Erlbaum.
Raykov, T., & Marcoulides, G. A. (2001). Can there be infinitely many models equivalent to a
given covariance structure? Structural Equation Modeling, 8, 142–149.
Raykov, T., Tomer, A., & Nesselroade, J. R. (1991). Reporting structural equation modeling results
in Psychology and Aging: Some proposed guidelines. Psychology and Aging, 6, 499–503.