
References 389
Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models: A synthesis
of two traditions. Sociological Methods Research, 32, 336–383.
Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hobo-
ken, NJ: Wiley.
Bollen, K. A., Kirby, J. B., Curran, P. J., Paxton, P. M., & Chen, F. (2007). Latent variable models
under misspecification: Two-stage least squares (TSLS) and maximum likelihood (ML) esti-
mators. Sociological Methods and Research, 36, 48–86.
Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation
perspective. Psychological Bulletin, 110, 305–314.
Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Modeling,
7, 461–483.
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical
Society, Series B (Methodological), 26, 211–252.
Breckler, S. J. (1990). Applications of covariance structure modeling in psychology: Cause for
concern? Psychological Bulletin, 107, 260–273.
Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: The effect of model size on
fit assessment in LISREL. In R. Cudeck, S. Du Toit, & D. Sörbom (Eds.), Structural equation
modeling: Present and future. A Festschrift in honor of Karl Jöreskog (pp. 169–194). Lincoln-
wood, IL: Scientific Software International.
Brito, C., & Pearl, J. (2003). A new identification condition for recursive models with correlated
errors. Structural Equation Modeling, 9, 459–474.
Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.
Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.), Topics in applied multivari-
ate analysis (pp. 72–141). Cambridge, UK: Cambridge University Press.
Browne, M. W. (1984). Asymptotic distribution free methods in analysis of covariance struc-
tures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen
& J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA:
Sage.
Bruhn, M., Georgi, D., & Hadwich, K. (2008). Customer equity management as formative sec-
ond-order construct. Journal of Business Research, 61, 1292–1301.
Burt, R. S. (1976). Interpretational confounding of unobserved variables in structural equation
models. Sociological Methods and Research, 5, 3–52.
Burton, A., & Altman, D. G. (2004). Missing covariate data within cancer prognostic studies: A
review of current reporting and proposed guidelines. British Journal of Cancer, 91, 4–8.
Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and pro-
gramming (2nd ed.). New York: Routledge.
Byrne, B. M. (2009). Structural equation modeling with Amos: Basic concepts, applications, and pro-
gramming (2nd ed.). New York: Routledge.
Byrne, B. M. (2010). Structural equation modeling with Mplus: Basic concepts, applications, and
programming. New York: Routledge.
Cameron, L. C., Ittenbach, R. F., McGrew, K. S., Harrison, P., Taylor, L. R., & Hwang, Y. R. (1997).
Confirmatory factor analysis of the K-ABC with gifted referrals. Educational and Psychologi-
cal Measurement, 57, 823–840.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multi-
trait–multimethod matrix. Psychological Bulletin, 56, 81–105.
Carle, A. C. (2009). Fitting multilevel models in complex survey data with design weights: Rec-
ommendations. Medical Research Methodology, 9(49). Retrieved August 25, 2009, from www.
biomedcentral.com/content/pdf/1471-2288-9-49.pdf
Chen, F., Bollen, K. A., Paxton, P., Curran, P. J., & Kirby, J. B. (2001). Improper solutions in
structural equation models: Causes, consequences, and strategies. Sociological Methods and
Research, 29, 468–508.