85
№ 962
1) f(x) = x
3
– 6x
2
+ 9 на [-2; 2], f(-2) = -8 – 6 ⋅ 4 + 9 = -23,
f(2) = 8 – 6 ⋅ 4 + 9 = -7, f′(x) = 3x
2
– 12x, f′(x) = 0, 3x(x – 4) = 0
x
1
= 0; x
2
= 4, 0 ∈ [-2; 2]; 4 ∉ [-2; 2], f(0) = 9,
[]
() ()
90max
2;2
==
−
fxf ,
[]
)
)
232min
2;2
−=−=
−
fxf ;
2) f(x) = x
3
+ 6x
2
+ 9x [-4; 0], f(-4) = -64 + 6 ⋅ 16 + 9 ⋅ (-4) = -4, f(0) = 0,
f′(x) = 3x
2
+ 12x + 9 f′(x) = 0, 3(x
2
+ 4x + 3) = 0, D/4 = 4 – 3 = 1,
x
1
= -3; x
2
= -1, -3 ∈ [-4; 0]; -1 ∈ [-4; 0], f(-1) = -1 + 6 – 9 = -4,
f(-3) = -27 + 6 ⋅ 9 – 9 ⋅ 3 = 0,
[]
() ( )
)
414min
0;4
−=−=−=
−
ffxf ,
[]
)
)
)
003max
0;4
==−=
−
ffxf ;
3) f(x) = x
4
– 2x
2
+ 3 [-4; 3], f(-4) = 256 – 2 ⋅ 16 + 3 = 227,
f(3) = 81 – 9 + 3 = 75, f′(x) = 4x
3
– 4x, f′(x) = 0, 4x(x
2
– 1) = 0,
x
1
= 0; x
2,3
= ±1, -1 ∈ [-4; 3]; 1 ∈ [-4; 3]; 0 ∈ [-4; 3],
f(-1) = f(1) = 1 – 2 + 3 = 2, f(0) = 0 + 0 + 3 = 3,
[]
() ( )
)
211min
3;4
==−=
−
ffxf ,
[]
)
)
2274max
3;4
=−=
−
fxf ;
4) f(x) = x
4
– 8x
2
+ 5 [-3; 2], f(-3) = 81 – 8 ⋅ 9 + 5 = 14,
f(2) = 16 – 8 ⋅ 4 + 5 = -11, f′(x) = 4x
3
– 16x, f′(x) = 0, 4x(x
2
– 4) = 0,
x
1
= 0; x
2,3
= ±2, 0 ∈ [-3; 2]; 2 ∈ [-3; 2]; -2 ∈ [-3; 2],
f(0) = 0 + 0 + 5 = 5, f(-2) = f(2) = -11,
[]
() ( )
)
1122min
2;3
−==−=
−
ffxf ,
[]
)
)
143max
2;3
=−=
−
fxf .
№ 963
Пусть сторона прямоугольника равна х, тогда другая сторона равна
⎟
⎠
⎞
⎜
⎝
⎛
− x
p
2
.
Тогда диагональ вычислим как:
()
2
2
2
⎟
⎠
⎞
⎜
⎝
⎛
−+== x
p
xxfl .
Исследуем эту функцию на min
=
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
−+=
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
+−+=
′
px
p
xxpx
p
xxf
4
2
4
)(
2
22
2
2