105
ми как результат на эти неполадки. Более того, сейчас повсеместно
признано, что проблемы в силу сложности мониторинга оборудова-
ния могут быть преодолены с помощью архитектур, содержащих
множество динамично взаимодействующих распределенных интел-
лектуальных модулей.
Список литературы
1. Ye, Z., Wu, B. A Review of Induction Motor Online Fault Diagnosis. – To-
ronto, 1999.
2. Zarei, J., Poshtan, J. An Advanced Park's Vectors Approach for Bearing
Fault Detection // J. of Tribology Intern. – Feb. 2009. – Vol. 42, Nr 2. –
Pp. 213–219.
3. Mohamed, S., Tettey, T., Marwala, T. An Extension Neural Network and
Genetic Algorithm for Bearing Fault Classification // Proceedings of the IEEE
World Congress on Computational Intelligence, WCCI 06, 15–21 July, Vancouver
BC, Canada, 2006. – Pp. 7673–7679.
4. Thompson, W. T., Fenger, M. Industrial Application Of Current Signature
Analysis To Diagnose Faults In 3-Phase Squirrel Cage Induction Motors // IEEE
Conference Record of Annual Pulp and Paper Industry Technical Conference,
2000. – Pp. 205–211.
5. Aroui, T. Modelling and Diagnostics of Induction Machines Under Rotor
Failures // ICGST-ACSE Journal. 2007. – Vol. 7, Iss. 2.
6. Ferrero, A., Superti-Furga, G. A New Approach to the Definition of Power
Components in Three-Phase Systems under Nonsinusoidal Conditions // IEEE
Trans. Instr. Meas. – 1991. – Vol. 40. – Pp. 568–577.
7. Benbouzid, M. What Stator Current Processing-Based Technique to Use for
Induction Motor Rotor Fault Diagnosis? // IEEE Transactions on Energy Conver-
sion. – 2003. – Vol. 18, Nr 2.
8. Induction Motor Fault Detection by using Wavelet decomposition on dq0
components / J. Cusido, J. A. Rosero, J. A. Ortega et al. // Proc. IEEE Int. Symp.
Ind. Electron., Jul. 9–13, 2006. – Vol. 3. – Pp. 2406–2411.
9. Grupi, V., Guglielmino, E., Milazzo, G. Neural-Network-Based System for
Novel Fault Detection in Rotating Machinery // J. of Vibration a. Control. – 2004. –
Nr 10. – Pp. 1137–1150.
10. Marwala, T., Vilakazi, C. Computational Intelligence for Condition Moni-
toring. URL: http://arxiv.org/ftp/arxiv/papers/0705/0705.2604.pdf (дата обраще-
ния: 31.08.2009).
11. A Comparison of Rotor Fault Detection Techniques with Respect to the
Assessment of Fault Severity / C. Kral, T. G. Habetler, R. G. Harley et al. // Diag-
nostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED
2003. 4th IEEE International Symposium on Volume, Issue, 24–26 Aug. 2003. –
Pp. 265–270.