96 4. Existence Techniques II: Parabolic Methods. The Heat Equation
Theorem 4.2.1: Let Ω be a bounded domain in R
d
,andletg(x, t) be con-
tinuous on ∂Ω ×(0, ∞), and suppose
lim
t→∞
g(x, t)=g(x) uniformly in x ∈ ∂Ω. (4.2.18)
Let F (x, t) be continuous on Ω × (0, ∞), and suppose
lim
t→∞
F (x, t)=F (x) uniformly in x ∈ Ω. (4.2.19)
Let u(x, t) be a solution of
Δu(x, t) −
∂
∂t
u(x, t)=F (x, t) for x ∈ Ω, 0 <t<∞,
u(x, t)=g(x, t) for x ∈ ∂Ω, 0 <t<∞. (4.2.20)
Let v(x) be a solution of
Δv(x)=F (x) for x ∈ Ω,
v(x)=g(x) for x ∈ ∂Ω. (4.2.21)
We then have
lim
t→∞
u(x, t)=v(x) uniformly in x ∈ Ω. (4.2.22)
Proof: We consider the difference
w(x, t)=u(x, t) − v(x). (4.2.23)
Then
Δw(x, t) −
∂
∂t
w(x, t)=F (x, t) − F (x)inΩ × (0, ∞),
w(x, t)=g(x, t) − g(x)in∂Ω × (0, ∞), (4.2.24)
and the claim follows from the following lemma:
Lemma 4.2.3: Let Ω be a bounded domain in R
d
,letφ(x, t) be continuous
on Ω ×(0, ∞), and suppose
lim
t→∞
φ(x, t)=0 uniformly in x ∈ Ω. (4.2.25)
Let γ(x, t) be continuous on ∂Ω × (0, ∞), and suppose
lim
t→∞
γ(x, t)=0 uniformly in x ∈ ∂Ω. (4.2.26)
Let w(x, t) be a solution of